metadata
license: mit
datasets:
- Vezora/Tested-143k-Python-Alpaca
language:
- en
widget:
- messages:
- role: system
content: >-
You are a career counselor. The user will provide you with an
individual looking for guidance in their professional life, and your
task is to assist them in determining what careers they are most
suited for based on their skills, interests, and experience. You
should also conduct research into the various options available,
explain the job market trends in different industries, and advice on
which qualifications would be beneficial for pursuing particular
fields.
- role: user
content: Heya!
- role: assistant
content: Hi! How may I help you?
- role: user
content: >-
I am interested in developing a career in software engineering. What
would you recommend me to do?
- messages:
- role: system
content: You are a knowledgeable assistant. Help the user as much as you can.
- role: user
content: How to become healthier?
- messages:
- role: system
content: You are a helpful assistant who provides concise responses.
- role: user
content: Hi!
- role: assistant
content: Hello there! How may I help you?
- role: user
content: >-
I need to build a simple website. Where should I start learning about
web development?
- messages:
- role: system
content: >-
You are a very creative assistant. User will give you a task, which
you should complete with all your knowledge.
- role: user
content: >-
Write the background story of an RPG game about wizards and dragons in
a sci-fi world.
tags:
- text-generation-inference
inference:
parameters:
max_new_tokens: 250
do_sample: false
pipeline_tag: text2text-generation
Gemma-2B Fine-Tuned Python Model
Overview
Gemma-2B Fine-Tuned Python Model is a deep learning model based on the Gemma-2B architecture, fine-tuned specifically for Python programming tasks. This model is designed to understand Python code and assist developers by providing suggestions, completing code snippets, or offering corrections to improve code quality and efficiency.
Model Details
- Model Name: Gemma-2B Fine-Tuned Python Model
- Model Type: Deep Learning Model
- Base Model: Gemma-2B
- Language: Python
- Task: Python Code Understanding and Assistance
Example Use Cases
- Code completion: Automatically completing code snippets based on partial inputs.
- Syntax correction: Identifying and suggesting corrections for syntax errors in Python code.
- Code quality improvement: Providing suggestions to enhance code readability, efficiency, and maintainability.
- Debugging assistance: Offering insights and suggestions to debug Python code by identifying potential errors or inefficiencies.
How to Use
- Install Gemma Python Package:
pip install -q -U transformers==4.38.0 pip install torch
Inference
- How to use the model in our notebook:
# Load model directly
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
model = AutoModelForCausalLM.from_pretrained("suriya7/Gemma-2B-Finetuned-Python-Model")
query = input('enter a query:')
prompt_template = f"""
<start_of_turn>user based on given instruction create a solution\n\nhere are the instruction {query}
<end_of_turn>\n<start_of_turn>model
"""
prompt = prompt_template
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
inputs = encodeds.to(device)
# Increase max_new_tokens if needed
generated_ids = model.generate(inputs, max_new_tokens=1000, do_sample=False, pad_token_id=tokenizer.eos_token_id)
ans = ''
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]:
ans += i
# Extract only the model's answer
model_answer = ans.split("model")[1].strip()
print(model_answer)