custom-object-test3 / README.md
sungile's picture
End of training
f4e08df verified
|
raw
history blame
3.47 kB
metadata
library_name: transformers
license: other
base_model: nvidia/mit-b0
tags:
  - vision
  - image-segmentation
  - generated_from_trainer
model-index:
  - name: custom-object-test3
    results: []

custom-object-test3

This model is a fine-tuned version of nvidia/mit-b0 on the sungile/custom-object-masking3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3334
  • Mean Iou: 0.5000
  • Mean Accuracy: 1.0000
  • Overall Accuracy: 1.0000
  • Accuracy Unknown: nan
  • Accuracy Background: 1.0000
  • Accuracy Object: nan
  • Iou Unknown: nan
  • Iou Background: 1.0000
  • Iou Object: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Unknown Accuracy Background Accuracy Object Iou Unknown Iou Background Iou Object
0.8217 0.25 20 0.8519 0.3321 0.9964 0.9964 nan 0.9964 nan 0.0 0.9964 0.0
0.6554 0.5 40 0.5881 0.3312 0.9937 0.9937 nan 0.9937 nan 0.0 0.9937 0.0
0.5488 0.75 60 0.4798 0.3316 0.9948 0.9948 nan 0.9948 nan 0.0 0.9948 0.0
0.469 1.0 80 0.4007 0.3326 0.9979 0.9979 nan 0.9979 nan 0.0 0.9979 0.0
0.438 1.25 100 0.3723 0.5000 1.0000 1.0000 nan 1.0000 nan nan 1.0000 0.0
0.3821 1.5 120 0.3781 0.3324 0.9971 0.9971 nan 0.9971 nan 0.0 0.9971 0.0
0.3472 1.75 140 0.3435 0.5000 1.0000 1.0000 nan 1.0000 nan nan 1.0000 0.0
0.3473 2.0 160 0.3334 0.5000 1.0000 1.0000 nan 1.0000 nan nan 1.0000 0.0

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.1.0+cu118
  • Datasets 3.2.0
  • Tokenizers 0.21.0