srinidhireddy1604 commited on
Commit
35241ff
·
verified ·
1 Parent(s): 7079e44

End of training

Browse files
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: mit
4
+ base_model: srinidhireddy1604/layoutlm-funsd
5
+ tags:
6
+ - generated_from_trainer
7
+ datasets:
8
+ - funsd
9
+ model-index:
10
+ - name: layoutlm-funsd2
11
+ results: []
12
+ ---
13
+
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
+
17
+ # layoutlm-funsd2
18
+
19
+ This model is a fine-tuned version of [srinidhireddy1604/layoutlm-funsd](https://huggingface.co/srinidhireddy1604/layoutlm-funsd) on the funsd dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.8155
22
+ - Answer: {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809}
23
+ - Header: {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119}
24
+ - Question: {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065}
25
+ - Overall Precision: 0.75
26
+ - Overall Recall: 0.7993
27
+ - Overall F1: 0.7739
28
+ - Overall Accuracy: 0.8050
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 3e-05
48
+ - train_batch_size: 32
49
+ - eval_batch_size: 16
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 15
54
+ - mixed_precision_training: Native AMP
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
60
+ | 0.5269 | 1.0 | 5 | 0.7058 | {'precision': 0.6515151515151515, 'recall': 0.7972805933250927, 'f1': 0.717065036131184, 'number': 809} | {'precision': 0.4032258064516129, 'recall': 0.21008403361344538, 'f1': 0.2762430939226519, 'number': 119} | {'precision': 0.7341659232827832, 'recall': 0.7727699530516432, 'f1': 0.7529734675205856, 'number': 1065} | 0.6871 | 0.7491 | 0.7168 | 0.7949 |
61
+ | 0.4603 | 2.0 | 10 | 0.7202 | {'precision': 0.6969339622641509, 'recall': 0.73053152039555, 'f1': 0.7133373566686784, 'number': 809} | {'precision': 0.2896551724137931, 'recall': 0.35294117647058826, 'f1': 0.31818181818181823, 'number': 119} | {'precision': 0.7457777777777778, 'recall': 0.787793427230047, 'f1': 0.7662100456621005, 'number': 1065} | 0.6950 | 0.7386 | 0.7161 | 0.7921 |
62
+ | 0.4097 | 3.0 | 15 | 0.6983 | {'precision': 0.7, 'recall': 0.7787391841779975, 'f1': 0.7372732592159158, 'number': 809} | {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} | {'precision': 0.7397831526271893, 'recall': 0.8328638497652582, 'f1': 0.7835689045936396, 'number': 1065} | 0.7013 | 0.7787 | 0.7380 | 0.8069 |
63
+ | 0.3584 | 4.0 | 20 | 0.7083 | {'precision': 0.7253121452894438, 'recall': 0.7898640296662547, 'f1': 0.7562130177514793, 'number': 809} | {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7732610659439928, 'recall': 0.8037558685446009, 'f1': 0.7882136279926335, 'number': 1065} | 0.7278 | 0.7702 | 0.7484 | 0.8095 |
64
+ | 0.325 | 5.0 | 25 | 0.7201 | {'precision': 0.6947483588621444, 'recall': 0.7849196538936959, 'f1': 0.7370864770748694, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7645021645021645, 'recall': 0.8291079812206573, 'f1': 0.7954954954954955, 'number': 1065} | 0.7069 | 0.7817 | 0.7424 | 0.8031 |
65
+ | 0.292 | 6.0 | 30 | 0.7411 | {'precision': 0.7247706422018348, 'recall': 0.7812113720642769, 'f1': 0.7519333729922665, 'number': 809} | {'precision': 0.36036036036036034, 'recall': 0.33613445378151263, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7846846846846847, 'recall': 0.8178403755868544, 'f1': 0.800919540229885, 'number': 1065} | 0.7372 | 0.7742 | 0.7553 | 0.8057 |
66
+ | 0.2752 | 7.0 | 35 | 0.7645 | {'precision': 0.7170022371364653, 'recall': 0.792336217552534, 'f1': 0.7527891955372871, 'number': 809} | {'precision': 0.3032258064516129, 'recall': 0.3949579831932773, 'f1': 0.34306569343065696, 'number': 119} | {'precision': 0.7769848349687779, 'recall': 0.8178403755868544, 'f1': 0.7968892955169259, 'number': 1065} | 0.7184 | 0.7822 | 0.7490 | 0.7943 |
67
+ | 0.2508 | 8.0 | 40 | 0.7613 | {'precision': 0.7331081081081081, 'recall': 0.8046971569839307, 'f1': 0.7672362993517973, 'number': 809} | {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} | {'precision': 0.7905944986690329, 'recall': 0.8366197183098592, 'f1': 0.8129562043795621, 'number': 1065} | 0.7413 | 0.7953 | 0.7674 | 0.8012 |
68
+ | 0.2305 | 9.0 | 45 | 0.7761 | {'precision': 0.7379862700228833, 'recall': 0.7972805933250927, 'f1': 0.7664884135472371, 'number': 809} | {'precision': 0.3161290322580645, 'recall': 0.4117647058823529, 'f1': 0.35766423357664234, 'number': 119} | {'precision': 0.7846975088967971, 'recall': 0.828169014084507, 'f1': 0.8058474189127455, 'number': 1065} | 0.7320 | 0.7908 | 0.7603 | 0.8018 |
69
+ | 0.2201 | 10.0 | 50 | 0.7905 | {'precision': 0.7369614512471655, 'recall': 0.8034610630407911, 'f1': 0.768775872264932, 'number': 809} | {'precision': 0.3409090909090909, 'recall': 0.37815126050420167, 'f1': 0.3585657370517928, 'number': 119} | {'precision': 0.791814946619217, 'recall': 0.8356807511737089, 'f1': 0.8131566925536775, 'number': 1065} | 0.7413 | 0.7953 | 0.7674 | 0.8033 |
70
+ | 0.2091 | 11.0 | 55 | 0.8025 | {'precision': 0.7281879194630873, 'recall': 0.8046971569839307, 'f1': 0.7645331767469172, 'number': 809} | {'precision': 0.33783783783783783, 'recall': 0.42016806722689076, 'f1': 0.37453183520599254, 'number': 119} | {'precision': 0.8009009009009009, 'recall': 0.8347417840375587, 'f1': 0.8174712643678161, 'number': 1065} | 0.7388 | 0.7978 | 0.7672 | 0.8014 |
71
+ | 0.197 | 12.0 | 60 | 0.8051 | {'precision': 0.74230330672748, 'recall': 0.8046971569839307, 'f1': 0.7722419928825623, 'number': 809} | {'precision': 0.3401360544217687, 'recall': 0.42016806722689076, 'f1': 0.37593984962406013, 'number': 119} | {'precision': 0.8025247971145176, 'recall': 0.8356807511737089, 'f1': 0.8187672493100275, 'number': 1065} | 0.7459 | 0.7983 | 0.7712 | 0.8035 |
72
+ | 0.1899 | 13.0 | 65 | 0.8079 | {'precision': 0.7448275862068966, 'recall': 0.8009888751545118, 'f1': 0.7718880285884455, 'number': 809} | {'precision': 0.3671875, 'recall': 0.3949579831932773, 'f1': 0.3805668016194332, 'number': 119} | {'precision': 0.7996422182468694, 'recall': 0.8394366197183099, 'f1': 0.8190563444800733, 'number': 1065} | 0.7509 | 0.7973 | 0.7734 | 0.8048 |
73
+ | 0.1839 | 14.0 | 70 | 0.8127 | {'precision': 0.7442660550458715, 'recall': 0.8022249690976514, 'f1': 0.7721594289113624, 'number': 809} | {'precision': 0.36496350364963503, 'recall': 0.42016806722689076, 'f1': 0.390625, 'number': 119} | {'precision': 0.8019713261648745, 'recall': 0.8403755868544601, 'f1': 0.8207244383310408, 'number': 1065} | 0.7501 | 0.7998 | 0.7742 | 0.8056 |
74
+ | 0.1821 | 15.0 | 75 | 0.8155 | {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809} | {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119} | {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065} | 0.75 | 0.7993 | 0.7739 | 0.8050 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.45.1
80
+ - Pytorch 2.4.0
81
+ - Datasets 3.0.1
82
+ - Tokenizers 0.20.0
logs/events.out.tfevents.1735797194.d8c49d11c03e.30.1 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c06cbd739c33fcc483510b0d8f10304b9b444a482dacfd96c063a56c64998610
3
- size 14408
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c321ba6a24b4cae576a7b451df762ebc0ad1573e91b7fd217fa7dd5969465843
3
+ size 16160
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fde8d1c274e25dc34d284a8339fcf17e5884d3ab0d4f850cb940187d5ceb7a77
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c10eba19116e6952ee6310eb7714c9053d6a248927fbf3d7caeda5b45bb0009a
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "apply_ocr": true,
3
+ "do_resize": true,
4
+ "image_processor_type": "LayoutLMv2ImageProcessor",
5
+ "ocr_lang": null,
6
+ "processor_class": "LayoutLMv2Processor",
7
+ "resample": 2,
8
+ "size": {
9
+ "height": 224,
10
+ "width": 224
11
+ },
12
+ "tesseract_config": ""
13
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff