End of training
Browse files- README.md +82 -0
- logs/events.out.tfevents.1735797194.d8c49d11c03e.30.1 +2 -2
- model.safetensors +1 -1
- preprocessor_config.json +13 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +80 -0
- vocab.txt +0 -0
README.md
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: srinidhireddy1604/layoutlm-funsd
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
datasets:
|
8 |
+
- funsd
|
9 |
+
model-index:
|
10 |
+
- name: layoutlm-funsd2
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# layoutlm-funsd2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [srinidhireddy1604/layoutlm-funsd](https://huggingface.co/srinidhireddy1604/layoutlm-funsd) on the funsd dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.8155
|
22 |
+
- Answer: {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809}
|
23 |
+
- Header: {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119}
|
24 |
+
- Question: {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065}
|
25 |
+
- Overall Precision: 0.75
|
26 |
+
- Overall Recall: 0.7993
|
27 |
+
- Overall F1: 0.7739
|
28 |
+
- Overall Accuracy: 0.8050
|
29 |
+
|
30 |
+
## Model description
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Intended uses & limitations
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training and evaluation data
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Training procedure
|
43 |
+
|
44 |
+
### Training hyperparameters
|
45 |
+
|
46 |
+
The following hyperparameters were used during training:
|
47 |
+
- learning_rate: 3e-05
|
48 |
+
- train_batch_size: 32
|
49 |
+
- eval_batch_size: 16
|
50 |
+
- seed: 42
|
51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
52 |
+
- lr_scheduler_type: linear
|
53 |
+
- num_epochs: 15
|
54 |
+
- mixed_precision_training: Native AMP
|
55 |
+
|
56 |
+
### Training results
|
57 |
+
|
58 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
59 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
60 |
+
| 0.5269 | 1.0 | 5 | 0.7058 | {'precision': 0.6515151515151515, 'recall': 0.7972805933250927, 'f1': 0.717065036131184, 'number': 809} | {'precision': 0.4032258064516129, 'recall': 0.21008403361344538, 'f1': 0.2762430939226519, 'number': 119} | {'precision': 0.7341659232827832, 'recall': 0.7727699530516432, 'f1': 0.7529734675205856, 'number': 1065} | 0.6871 | 0.7491 | 0.7168 | 0.7949 |
|
61 |
+
| 0.4603 | 2.0 | 10 | 0.7202 | {'precision': 0.6969339622641509, 'recall': 0.73053152039555, 'f1': 0.7133373566686784, 'number': 809} | {'precision': 0.2896551724137931, 'recall': 0.35294117647058826, 'f1': 0.31818181818181823, 'number': 119} | {'precision': 0.7457777777777778, 'recall': 0.787793427230047, 'f1': 0.7662100456621005, 'number': 1065} | 0.6950 | 0.7386 | 0.7161 | 0.7921 |
|
62 |
+
| 0.4097 | 3.0 | 15 | 0.6983 | {'precision': 0.7, 'recall': 0.7787391841779975, 'f1': 0.7372732592159158, 'number': 809} | {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} | {'precision': 0.7397831526271893, 'recall': 0.8328638497652582, 'f1': 0.7835689045936396, 'number': 1065} | 0.7013 | 0.7787 | 0.7380 | 0.8069 |
|
63 |
+
| 0.3584 | 4.0 | 20 | 0.7083 | {'precision': 0.7253121452894438, 'recall': 0.7898640296662547, 'f1': 0.7562130177514793, 'number': 809} | {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119} | {'precision': 0.7732610659439928, 'recall': 0.8037558685446009, 'f1': 0.7882136279926335, 'number': 1065} | 0.7278 | 0.7702 | 0.7484 | 0.8095 |
|
64 |
+
| 0.325 | 5.0 | 25 | 0.7201 | {'precision': 0.6947483588621444, 'recall': 0.7849196538936959, 'f1': 0.7370864770748694, 'number': 809} | {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} | {'precision': 0.7645021645021645, 'recall': 0.8291079812206573, 'f1': 0.7954954954954955, 'number': 1065} | 0.7069 | 0.7817 | 0.7424 | 0.8031 |
|
65 |
+
| 0.292 | 6.0 | 30 | 0.7411 | {'precision': 0.7247706422018348, 'recall': 0.7812113720642769, 'f1': 0.7519333729922665, 'number': 809} | {'precision': 0.36036036036036034, 'recall': 0.33613445378151263, 'f1': 0.34782608695652173, 'number': 119} | {'precision': 0.7846846846846847, 'recall': 0.8178403755868544, 'f1': 0.800919540229885, 'number': 1065} | 0.7372 | 0.7742 | 0.7553 | 0.8057 |
|
66 |
+
| 0.2752 | 7.0 | 35 | 0.7645 | {'precision': 0.7170022371364653, 'recall': 0.792336217552534, 'f1': 0.7527891955372871, 'number': 809} | {'precision': 0.3032258064516129, 'recall': 0.3949579831932773, 'f1': 0.34306569343065696, 'number': 119} | {'precision': 0.7769848349687779, 'recall': 0.8178403755868544, 'f1': 0.7968892955169259, 'number': 1065} | 0.7184 | 0.7822 | 0.7490 | 0.7943 |
|
67 |
+
| 0.2508 | 8.0 | 40 | 0.7613 | {'precision': 0.7331081081081081, 'recall': 0.8046971569839307, 'f1': 0.7672362993517973, 'number': 809} | {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} | {'precision': 0.7905944986690329, 'recall': 0.8366197183098592, 'f1': 0.8129562043795621, 'number': 1065} | 0.7413 | 0.7953 | 0.7674 | 0.8012 |
|
68 |
+
| 0.2305 | 9.0 | 45 | 0.7761 | {'precision': 0.7379862700228833, 'recall': 0.7972805933250927, 'f1': 0.7664884135472371, 'number': 809} | {'precision': 0.3161290322580645, 'recall': 0.4117647058823529, 'f1': 0.35766423357664234, 'number': 119} | {'precision': 0.7846975088967971, 'recall': 0.828169014084507, 'f1': 0.8058474189127455, 'number': 1065} | 0.7320 | 0.7908 | 0.7603 | 0.8018 |
|
69 |
+
| 0.2201 | 10.0 | 50 | 0.7905 | {'precision': 0.7369614512471655, 'recall': 0.8034610630407911, 'f1': 0.768775872264932, 'number': 809} | {'precision': 0.3409090909090909, 'recall': 0.37815126050420167, 'f1': 0.3585657370517928, 'number': 119} | {'precision': 0.791814946619217, 'recall': 0.8356807511737089, 'f1': 0.8131566925536775, 'number': 1065} | 0.7413 | 0.7953 | 0.7674 | 0.8033 |
|
70 |
+
| 0.2091 | 11.0 | 55 | 0.8025 | {'precision': 0.7281879194630873, 'recall': 0.8046971569839307, 'f1': 0.7645331767469172, 'number': 809} | {'precision': 0.33783783783783783, 'recall': 0.42016806722689076, 'f1': 0.37453183520599254, 'number': 119} | {'precision': 0.8009009009009009, 'recall': 0.8347417840375587, 'f1': 0.8174712643678161, 'number': 1065} | 0.7388 | 0.7978 | 0.7672 | 0.8014 |
|
71 |
+
| 0.197 | 12.0 | 60 | 0.8051 | {'precision': 0.74230330672748, 'recall': 0.8046971569839307, 'f1': 0.7722419928825623, 'number': 809} | {'precision': 0.3401360544217687, 'recall': 0.42016806722689076, 'f1': 0.37593984962406013, 'number': 119} | {'precision': 0.8025247971145176, 'recall': 0.8356807511737089, 'f1': 0.8187672493100275, 'number': 1065} | 0.7459 | 0.7983 | 0.7712 | 0.8035 |
|
72 |
+
| 0.1899 | 13.0 | 65 | 0.8079 | {'precision': 0.7448275862068966, 'recall': 0.8009888751545118, 'f1': 0.7718880285884455, 'number': 809} | {'precision': 0.3671875, 'recall': 0.3949579831932773, 'f1': 0.3805668016194332, 'number': 119} | {'precision': 0.7996422182468694, 'recall': 0.8394366197183099, 'f1': 0.8190563444800733, 'number': 1065} | 0.7509 | 0.7973 | 0.7734 | 0.8048 |
|
73 |
+
| 0.1839 | 14.0 | 70 | 0.8127 | {'precision': 0.7442660550458715, 'recall': 0.8022249690976514, 'f1': 0.7721594289113624, 'number': 809} | {'precision': 0.36496350364963503, 'recall': 0.42016806722689076, 'f1': 0.390625, 'number': 119} | {'precision': 0.8019713261648745, 'recall': 0.8403755868544601, 'f1': 0.8207244383310408, 'number': 1065} | 0.7501 | 0.7998 | 0.7742 | 0.8056 |
|
74 |
+
| 0.1821 | 15.0 | 75 | 0.8155 | {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809} | {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119} | {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065} | 0.75 | 0.7993 | 0.7739 | 0.8050 |
|
75 |
+
|
76 |
+
|
77 |
+
### Framework versions
|
78 |
+
|
79 |
+
- Transformers 4.45.1
|
80 |
+
- Pytorch 2.4.0
|
81 |
+
- Datasets 3.0.1
|
82 |
+
- Tokenizers 0.20.0
|
logs/events.out.tfevents.1735797194.d8c49d11c03e.30.1
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c321ba6a24b4cae576a7b451df762ebc0ad1573e91b7fd217fa7dd5969465843
|
3 |
+
size 16160
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c10eba19116e6952ee6310eb7714c9053d6a248927fbf3d7caeda5b45bb0009a
|
3 |
size 450558212
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"apply_ocr": true,
|
3 |
+
"do_resize": true,
|
4 |
+
"image_processor_type": "LayoutLMv2ImageProcessor",
|
5 |
+
"ocr_lang": null,
|
6 |
+
"processor_class": "LayoutLMv2Processor",
|
7 |
+
"resample": 2,
|
8 |
+
"size": {
|
9 |
+
"height": 224,
|
10 |
+
"width": 224
|
11 |
+
},
|
12 |
+
"tesseract_config": ""
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"additional_special_tokens": [],
|
45 |
+
"apply_ocr": false,
|
46 |
+
"clean_up_tokenization_spaces": false,
|
47 |
+
"cls_token": "[CLS]",
|
48 |
+
"cls_token_box": [
|
49 |
+
0,
|
50 |
+
0,
|
51 |
+
0,
|
52 |
+
0
|
53 |
+
],
|
54 |
+
"do_basic_tokenize": true,
|
55 |
+
"do_lower_case": true,
|
56 |
+
"mask_token": "[MASK]",
|
57 |
+
"model_max_length": 512,
|
58 |
+
"never_split": null,
|
59 |
+
"only_label_first_subword": true,
|
60 |
+
"pad_token": "[PAD]",
|
61 |
+
"pad_token_box": [
|
62 |
+
0,
|
63 |
+
0,
|
64 |
+
0,
|
65 |
+
0
|
66 |
+
],
|
67 |
+
"pad_token_label": -100,
|
68 |
+
"processor_class": "LayoutLMv2Processor",
|
69 |
+
"sep_token": "[SEP]",
|
70 |
+
"sep_token_box": [
|
71 |
+
1000,
|
72 |
+
1000,
|
73 |
+
1000,
|
74 |
+
1000
|
75 |
+
],
|
76 |
+
"strip_accents": null,
|
77 |
+
"tokenize_chinese_chars": true,
|
78 |
+
"tokenizer_class": "LayoutLMv2Tokenizer",
|
79 |
+
"unk_token": "[UNK]"
|
80 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|