layoutlm-funsd2

This model is a fine-tuned version of srinidhireddy1604/layoutlm-funsd on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8155
  • Answer: {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809}
  • Header: {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119}
  • Question: {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065}
  • Overall Precision: 0.75
  • Overall Recall: 0.7993
  • Overall F1: 0.7739
  • Overall Accuracy: 0.8050

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
0.5269 1.0 5 0.7058 {'precision': 0.6515151515151515, 'recall': 0.7972805933250927, 'f1': 0.717065036131184, 'number': 809} {'precision': 0.4032258064516129, 'recall': 0.21008403361344538, 'f1': 0.2762430939226519, 'number': 119} {'precision': 0.7341659232827832, 'recall': 0.7727699530516432, 'f1': 0.7529734675205856, 'number': 1065} 0.6871 0.7491 0.7168 0.7949
0.4603 2.0 10 0.7202 {'precision': 0.6969339622641509, 'recall': 0.73053152039555, 'f1': 0.7133373566686784, 'number': 809} {'precision': 0.2896551724137931, 'recall': 0.35294117647058826, 'f1': 0.31818181818181823, 'number': 119} {'precision': 0.7457777777777778, 'recall': 0.787793427230047, 'f1': 0.7662100456621005, 'number': 1065} 0.6950 0.7386 0.7161 0.7921
0.4097 3.0 15 0.6983 {'precision': 0.7, 'recall': 0.7787391841779975, 'f1': 0.7372732592159158, 'number': 809} {'precision': 0.30701754385964913, 'recall': 0.29411764705882354, 'f1': 0.30042918454935624, 'number': 119} {'precision': 0.7397831526271893, 'recall': 0.8328638497652582, 'f1': 0.7835689045936396, 'number': 1065} 0.7013 0.7787 0.7380 0.8069
0.3584 4.0 20 0.7083 {'precision': 0.7253121452894438, 'recall': 0.7898640296662547, 'f1': 0.7562130177514793, 'number': 809} {'precision': 0.3305785123966942, 'recall': 0.33613445378151263, 'f1': 0.33333333333333337, 'number': 119} {'precision': 0.7732610659439928, 'recall': 0.8037558685446009, 'f1': 0.7882136279926335, 'number': 1065} 0.7278 0.7702 0.7484 0.8095
0.325 5.0 25 0.7201 {'precision': 0.6947483588621444, 'recall': 0.7849196538936959, 'f1': 0.7370864770748694, 'number': 809} {'precision': 0.2962962962962963, 'recall': 0.33613445378151263, 'f1': 0.31496062992125984, 'number': 119} {'precision': 0.7645021645021645, 'recall': 0.8291079812206573, 'f1': 0.7954954954954955, 'number': 1065} 0.7069 0.7817 0.7424 0.8031
0.292 6.0 30 0.7411 {'precision': 0.7247706422018348, 'recall': 0.7812113720642769, 'f1': 0.7519333729922665, 'number': 809} {'precision': 0.36036036036036034, 'recall': 0.33613445378151263, 'f1': 0.34782608695652173, 'number': 119} {'precision': 0.7846846846846847, 'recall': 0.8178403755868544, 'f1': 0.800919540229885, 'number': 1065} 0.7372 0.7742 0.7553 0.8057
0.2752 7.0 35 0.7645 {'precision': 0.7170022371364653, 'recall': 0.792336217552534, 'f1': 0.7527891955372871, 'number': 809} {'precision': 0.3032258064516129, 'recall': 0.3949579831932773, 'f1': 0.34306569343065696, 'number': 119} {'precision': 0.7769848349687779, 'recall': 0.8178403755868544, 'f1': 0.7968892955169259, 'number': 1065} 0.7184 0.7822 0.7490 0.7943
0.2508 8.0 40 0.7613 {'precision': 0.7331081081081081, 'recall': 0.8046971569839307, 'f1': 0.7672362993517973, 'number': 809} {'precision': 0.34959349593495936, 'recall': 0.36134453781512604, 'f1': 0.35537190082644626, 'number': 119} {'precision': 0.7905944986690329, 'recall': 0.8366197183098592, 'f1': 0.8129562043795621, 'number': 1065} 0.7413 0.7953 0.7674 0.8012
0.2305 9.0 45 0.7761 {'precision': 0.7379862700228833, 'recall': 0.7972805933250927, 'f1': 0.7664884135472371, 'number': 809} {'precision': 0.3161290322580645, 'recall': 0.4117647058823529, 'f1': 0.35766423357664234, 'number': 119} {'precision': 0.7846975088967971, 'recall': 0.828169014084507, 'f1': 0.8058474189127455, 'number': 1065} 0.7320 0.7908 0.7603 0.8018
0.2201 10.0 50 0.7905 {'precision': 0.7369614512471655, 'recall': 0.8034610630407911, 'f1': 0.768775872264932, 'number': 809} {'precision': 0.3409090909090909, 'recall': 0.37815126050420167, 'f1': 0.3585657370517928, 'number': 119} {'precision': 0.791814946619217, 'recall': 0.8356807511737089, 'f1': 0.8131566925536775, 'number': 1065} 0.7413 0.7953 0.7674 0.8033
0.2091 11.0 55 0.8025 {'precision': 0.7281879194630873, 'recall': 0.8046971569839307, 'f1': 0.7645331767469172, 'number': 809} {'precision': 0.33783783783783783, 'recall': 0.42016806722689076, 'f1': 0.37453183520599254, 'number': 119} {'precision': 0.8009009009009009, 'recall': 0.8347417840375587, 'f1': 0.8174712643678161, 'number': 1065} 0.7388 0.7978 0.7672 0.8014
0.197 12.0 60 0.8051 {'precision': 0.74230330672748, 'recall': 0.8046971569839307, 'f1': 0.7722419928825623, 'number': 809} {'precision': 0.3401360544217687, 'recall': 0.42016806722689076, 'f1': 0.37593984962406013, 'number': 119} {'precision': 0.8025247971145176, 'recall': 0.8356807511737089, 'f1': 0.8187672493100275, 'number': 1065} 0.7459 0.7983 0.7712 0.8035
0.1899 13.0 65 0.8079 {'precision': 0.7448275862068966, 'recall': 0.8009888751545118, 'f1': 0.7718880285884455, 'number': 809} {'precision': 0.3671875, 'recall': 0.3949579831932773, 'f1': 0.3805668016194332, 'number': 119} {'precision': 0.7996422182468694, 'recall': 0.8394366197183099, 'f1': 0.8190563444800733, 'number': 1065} 0.7509 0.7973 0.7734 0.8048
0.1839 14.0 70 0.8127 {'precision': 0.7442660550458715, 'recall': 0.8022249690976514, 'f1': 0.7721594289113624, 'number': 809} {'precision': 0.36496350364963503, 'recall': 0.42016806722689076, 'f1': 0.390625, 'number': 119} {'precision': 0.8019713261648745, 'recall': 0.8403755868544601, 'f1': 0.8207244383310408, 'number': 1065} 0.7501 0.7998 0.7742 0.8056
0.1821 15.0 75 0.8155 {'precision': 0.7465437788018433, 'recall': 0.8009888751545118, 'f1': 0.7728085867620751, 'number': 809} {'precision': 0.3597122302158273, 'recall': 0.42016806722689076, 'f1': 0.38759689922480617, 'number': 119} {'precision': 0.8012533572068039, 'recall': 0.8403755868544601, 'f1': 0.8203483043079742, 'number': 1065} 0.75 0.7993 0.7739 0.8050

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
102
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for srinidhireddy1604/layoutlm-funsd2

Finetuned
(1)
this model
Finetunes
1 model