File size: 74,197 Bytes
ff6a38d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sparse-encoder
- sparse
- splade
- generated_from_trainer
- dataset_size:99000
- loss:SpladeLoss
- loss:SparseMultipleNegativesRankingLoss
- loss:FlopsLoss
base_model: distilbert/distilbert-base-uncased
widget:
- text: 'The term emergent literacy signals a belief that, in a literate society,
    young children even one and two year olds, are in the process of becoming literate”.
    ... Gray (1956:21) notes: Functional literacy is used for the training of adults
    to ''meet independently the reading and writing demands placed on them''.'
- text: Rey is seemingly confirmed as being The Chosen One per a quote by a Lucasfilm
    production designer who worked on The Rise of Skywalker.
- text: are union gun safes fireproof?
- text: Fruit is an essential part of a healthy diet  and may aid weight loss. Most
    fruits are low in calories while high in nutrients and fiber, which can boost
    your fullness. Keep in mind that it's best to eat fruits whole rather than juiced.
    What's more, simply eating fruit is not the key to weight loss.
- text: Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate
    or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks
    for chronic sinusitis.
datasets:
- sentence-transformers/gooaq
pipeline_tag: feature-extraction
library_name: sentence-transformers
metrics:
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
- query_active_dims
- query_sparsity_ratio
- corpus_active_dims
- corpus_sparsity_ratio
co2_eq_emissions:
  emissions: 1.0881870582723092
  energy_consumed: 0.019418388234485075
  source: codecarbon
  training_type: fine-tuning
  on_cloud: false
  cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics
  ram_total_size: 30.6114501953125
  hours_used: 0.174
  hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
model-index:
- name: splade-distilbert-base-uncased trained on GooAQ
  results:
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoMSMARCO
      type: NanoMSMARCO
    metrics:
    - type: dot_accuracy@1
      value: 0.22
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.46
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.22
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.15333333333333332
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.10800000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.22
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.46
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.54
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.44470504856183124
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3652460317460317
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.37928248813494486
      name: Dot Map@100
    - type: query_active_dims
      value: 125.86000061035156
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9958764169906837
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 296.2349853515625
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9902943783057611
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.24
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.58
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.72
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.24
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.16666666666666663
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.11600000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.07200000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.24
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.58
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.72
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.47847271089832977
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.40169047619047615
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.4140044816294816
      name: Dot Map@100
    - type: query_active_dims
      value: 109.69999694824219
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9964058712748758
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 265.6180725097656
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9912974879591847
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNFCorpus
      type: NanoNFCorpus
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.56
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.58
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2866666666666666
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.276
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.20400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.020432228546915038
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.05966030415500706
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.08546529551494754
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.10325648585391117
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2586742055175529
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.444
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.10277044614671307
      name: Dot Map@100
    - type: query_active_dims
      value: 160.10000610351562
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9947546030370383
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 409.76904296875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.986574633281936
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.38
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.52
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.66
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.38
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.29333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.268
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.22799999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.03979891140267026
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.05843303142773433
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.07656018207627424
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.10998150964383814
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.28162049888840096
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4571904761904762
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.11433559983443616
      name: Dot Map@100
    - type: query_active_dims
      value: 140.05999755859375
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9954111789018218
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 371.9038391113281
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9878152205258068
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoNQ
      type: NanoNQ
    metrics:
    - type: dot_accuracy@1
      value: 0.32
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.54
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.64
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.32
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.18
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.3
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.5
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.62
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.7
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5013957867971872
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4491904761904762
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.44262111936629595
      name: Dot Map@100
    - type: query_active_dims
      value: 128.39999389648438
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9957931985487031
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 359.4007873535156
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9882248611705158
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.72
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.19333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.136
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.078
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.34
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.54
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.63
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.69
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.5189963924532662
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.4757777777777777
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.46913515575703424
      name: Dot Map@100
    - type: query_active_dims
      value: 115.30000305175781
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9962223968595846
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 336.913818359375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9889616074189316
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-nano-beir
      name: Sparse Nano BEIR
    dataset:
      name: NanoBEIR mean
      type: NanoBEIR_mean
    metrics:
    - type: dot_accuracy@1
      value: 0.3
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.5
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.5800000000000001
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.6733333333333332
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.3
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.20666666666666664
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.17333333333333334
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11800000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.180144076182305
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.339886768051669
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4151550985049825
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.501085495284637
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.40159168029219044
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.41947883597883595
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.30822468454931795
      name: Dot Map@100
    - type: query_active_dims
      value: 138.12000020345053
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9954747395254749
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 346.36973212643693
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9886518009263339
      name: Corpus Sparsity Ratio
    - type: dot_accuracy@1
      value: 0.4301726844583988
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.6182417582417583
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.6783359497645213
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.7722135007849293
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4301726844583988
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.274160125588697
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.21524646781789644
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.1563861852433281
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.24332694326060123
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.38912806185875454
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.4466126446755131
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.5378480354517308
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.48091561944614786
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5383367720714658
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.40550699373209664
      name: Dot Map@100
    - type: query_active_dims
      value: 161.59013707612073
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9947057814993735
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 302.84806046588795
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.99007771245443
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoClimateFEVER
      type: NanoClimateFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.26
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.4
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.42
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.64
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.26
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.14
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.09200000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.13
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.18
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.19
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.30733333333333335
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.2528315611912319
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.3483253968253968
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.195000428587257
      name: Dot Map@100
    - type: query_active_dims
      value: 215.39999389648438
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9929427955606944
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 334.818359375
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9890302614712339
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoDBPedia
      type: NanoDBPedia
    metrics:
    - type: dot_accuracy@1
      value: 0.54
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.68
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.76
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.54
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.43333333333333335
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.4
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.35999999999999993
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.04725330037285543
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.09136010229983793
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.12256470056683391
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.24664786941021674
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.43054704834652313
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6440714285714284
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.3239717199251123
      name: Dot Map@100
    - type: query_active_dims
      value: 147.72000122070312
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9951602122658835
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 295.1452331542969
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9903300821324194
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFEVER
      type: NanoFEVER
    metrics:
    - type: dot_accuracy@1
      value: 0.56
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.78
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.86
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.56
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.172
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.096
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.5466666666666666
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7466666666666666
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8066666666666668
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8766666666666667
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7202530021492869
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6843809523809523
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6647642136958143
      name: Dot Map@100
    - type: query_active_dims
      value: 201.5399932861328
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9933968942636088
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 374.9945983886719
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9877139571984578
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoFiQA2018
      type: NanoFiQA2018
    metrics:
    - type: dot_accuracy@1
      value: 0.36
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.52
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.54
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.62
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.36
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.24666666666666667
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.168
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.106
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.18857936507936507
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.3216825396825396
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.3532380952380953
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.4552380952380953
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.3784249151812378
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.44319047619047613
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.31981273776184116
      name: Dot Map@100
    - type: query_active_dims
      value: 87.62000274658203
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9971292837053083
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 275.46795654296875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9909747737191872
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoHotpotQA
      type: NanoHotpotQA
    metrics:
    - type: dot_accuracy@1
      value: 0.66
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.86
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.92
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.92
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.66
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.4333333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.2879999999999999
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.15599999999999997
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.33
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.65
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.72
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.78
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6985941766475363
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7596666666666667
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.632578269203448
      name: Dot Map@100
    - type: query_active_dims
      value: 131.75999450683594
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9956831139995139
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 330.9889831542969
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9891557242921729
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoQuoraRetrieval
      type: NanoQuoraRetrieval
    metrics:
    - type: dot_accuracy@1
      value: 0.58
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.76
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.86
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.94
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.58
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.26
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.184
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.11199999999999999
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.57
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.7233333333333334
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.8233333333333333
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.8953333333333333
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.7379320795882585
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6864126984126984
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.6882004324782192
      name: Dot Map@100
    - type: query_active_dims
      value: 56.70000076293945
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9981423235448876
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 63.429447174072266
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9979218449913483
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSCIDOCS
      type: NanoSCIDOCS
    metrics:
    - type: dot_accuracy@1
      value: 0.4
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.58
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.74
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.4
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.2533333333333333
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.228
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.154
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.08466666666666667
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.15866666666666668
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.23566666666666666
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.31666666666666665
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.307302076202993
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.5031111111111111
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.2314013330851555
      name: Dot Map@100
    - type: query_active_dims
      value: 219.97999572753906
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9927927398031735
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 370.2647399902344
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.98786892274457
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoArguAna
      type: NanoArguAna
    metrics:
    - type: dot_accuracy@1
      value: 0.1
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.38
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.46
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.54
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.1
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.12666666666666665
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.09200000000000001
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.05400000000000001
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.1
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.38
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.46
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.54
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.314067080699688
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.24191269841269844
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.2544871127158089
      name: Dot Map@100
    - type: query_active_dims
      value: 392.3999938964844
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.98714369982647
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 371.9895324707031
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9878124129326157
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoSciFact
      type: NanoSciFact
    metrics:
    - type: dot_accuracy@1
      value: 0.54
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.64
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.66
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.78
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.54
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.22
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.14400000000000002
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.08599999999999998
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.505
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.6
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.635
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.76
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.6330847757650383
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.6099365079365079
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.5921039809068559
      name: Dot Map@100
    - type: query_active_dims
      value: 239.02000427246094
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9921689271911257
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 362.61492919921875
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9881195554288966
      name: Corpus Sparsity Ratio
  - task:
      type: sparse-information-retrieval
      name: Sparse Information Retrieval
    dataset:
      name: NanoTouche2020
      type: NanoTouche2020
    metrics:
    - type: dot_accuracy@1
      value: 0.6122448979591837
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.8571428571428571
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9183673469387755
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9387755102040817
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.6122448979591837
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.5374149659863945
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.5102040816326532
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.4510204081632653
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.04128535219959204
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.10852246408702973
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.17293473623380118
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.29415698658034994
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.4997767347881314
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.7427113702623908
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.37179545293679184
      name: Dot Map@100
    - type: query_active_dims
      value: 41.06122589111328
      name: Query Active Dims
    - type: query_sparsity_ratio
      value: 0.9986547006784905
      name: Query Sparsity Ratio
    - type: corpus_active_dims
      value: 307.7058410644531
      name: Corpus Active Dims
    - type: corpus_sparsity_ratio
      value: 0.9899185557609445
      name: Corpus Sparsity Ratio
---

# splade-distilbert-base-uncased trained on GooAQ

This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space   and can be used for semantic search and sparse retrieval.
## Model Details

### Model Description
- **Model Type:** SPLADE Sparse Encoder
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 30522 dimensions
- **Similarity Function:** Dot Product
- **Training Dataset:**
    - [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)

### Full Model Architecture

```
SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-gooaq")
# Run inference
sentences = [
    'how many days for doxycycline to work on sinus infection?',
    'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
    'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Sparse Information Retrieval

* Datasets: `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoClimateFEVER`, `NanoDBPedia`, `NanoFEVER`, `NanoFiQA2018`, `NanoHotpotQA`, `NanoMSMARCO`, `NanoNFCorpus`, `NanoNQ`, `NanoQuoraRetrieval`, `NanoSCIDOCS`, `NanoArguAna`, `NanoSciFact` and `NanoTouche2020`
* Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator)

| Metric                | NanoMSMARCO | NanoNFCorpus | NanoNQ    | NanoClimateFEVER | NanoDBPedia | NanoFEVER  | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
|:----------------------|:------------|:-------------|:----------|:-----------------|:------------|:-----------|:-------------|:-------------|:-------------------|:------------|:------------|:------------|:---------------|
| dot_accuracy@1        | 0.24        | 0.38         | 0.36      | 0.26             | 0.54        | 0.56       | 0.36         | 0.66         | 0.58               | 0.4         | 0.1         | 0.54        | 0.6122         |
| dot_accuracy@3        | 0.5         | 0.5          | 0.58      | 0.4              | 0.68        | 0.78       | 0.52         | 0.86         | 0.76               | 0.58        | 0.38        | 0.64        | 0.8571         |
| dot_accuracy@5        | 0.58        | 0.52         | 0.66      | 0.42             | 0.76        | 0.86       | 0.54         | 0.92         | 0.86               | 0.66        | 0.46        | 0.66        | 0.9184         |
| dot_accuracy@10       | 0.72        | 0.66         | 0.72      | 0.64             | 0.9         | 0.92       | 0.62         | 0.92         | 0.94               | 0.74        | 0.54        | 0.78        | 0.9388         |
| dot_precision@1       | 0.24        | 0.38         | 0.36      | 0.26             | 0.54        | 0.56       | 0.36         | 0.66         | 0.58               | 0.4         | 0.1         | 0.54        | 0.6122         |
| dot_precision@3       | 0.1667      | 0.2933       | 0.1933    | 0.14             | 0.4333      | 0.26       | 0.2467       | 0.4333       | 0.26               | 0.2533      | 0.1267      | 0.22        | 0.5374         |
| dot_precision@5       | 0.116       | 0.268        | 0.136     | 0.092            | 0.4         | 0.172      | 0.168        | 0.288        | 0.184              | 0.228       | 0.092       | 0.144       | 0.5102         |
| dot_precision@10      | 0.072       | 0.228        | 0.078     | 0.08             | 0.36        | 0.096      | 0.106        | 0.156        | 0.112              | 0.154       | 0.054       | 0.086       | 0.451          |
| dot_recall@1          | 0.24        | 0.0398       | 0.34      | 0.13             | 0.0473      | 0.5467     | 0.1886       | 0.33         | 0.57               | 0.0847      | 0.1         | 0.505       | 0.0413         |
| dot_recall@3          | 0.5         | 0.0584       | 0.54      | 0.18             | 0.0914      | 0.7467     | 0.3217       | 0.65         | 0.7233             | 0.1587      | 0.38        | 0.6         | 0.1085         |
| dot_recall@5          | 0.58        | 0.0766       | 0.63      | 0.19             | 0.1226      | 0.8067     | 0.3532       | 0.72         | 0.8233             | 0.2357      | 0.46        | 0.635       | 0.1729         |
| dot_recall@10         | 0.72        | 0.11         | 0.69      | 0.3073           | 0.2466      | 0.8767     | 0.4552       | 0.78         | 0.8953             | 0.3167      | 0.54        | 0.76        | 0.2942         |
| **dot_ndcg@10**       | **0.4785**  | **0.2816**   | **0.519** | **0.2528**       | **0.4305**  | **0.7203** | **0.3784**   | **0.6986**   | **0.7379**         | **0.3073**  | **0.3141**  | **0.6331**  | **0.4998**     |
| dot_mrr@10            | 0.4017      | 0.4572       | 0.4758    | 0.3483           | 0.6441      | 0.6844     | 0.4432       | 0.7597       | 0.6864             | 0.5031      | 0.2419      | 0.6099      | 0.7427         |
| dot_map@100           | 0.414       | 0.1143       | 0.4691    | 0.195            | 0.324       | 0.6648     | 0.3198       | 0.6326       | 0.6882             | 0.2314      | 0.2545      | 0.5921      | 0.3718         |
| query_active_dims     | 109.7       | 140.06       | 115.3     | 215.4            | 147.72      | 201.54     | 87.62        | 131.76       | 56.7               | 219.98      | 392.4       | 239.02      | 41.0612        |
| query_sparsity_ratio  | 0.9964      | 0.9954       | 0.9962    | 0.9929           | 0.9952      | 0.9934     | 0.9971       | 0.9957       | 0.9981             | 0.9928      | 0.9871      | 0.9922      | 0.9987         |
| corpus_active_dims    | 265.6181    | 371.9038     | 336.9138  | 334.8184         | 295.1452    | 374.9946   | 275.468      | 330.989      | 63.4294            | 370.2647    | 371.9895    | 362.6149    | 307.7058       |
| corpus_sparsity_ratio | 0.9913      | 0.9878       | 0.989     | 0.989            | 0.9903      | 0.9877     | 0.991        | 0.9892       | 0.9979             | 0.9879      | 0.9878      | 0.9881      | 0.9899         |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.3        |
| dot_accuracy@3        | 0.5        |
| dot_accuracy@5        | 0.58       |
| dot_accuracy@10       | 0.6733     |
| dot_precision@1       | 0.3        |
| dot_precision@3       | 0.2067     |
| dot_precision@5       | 0.1733     |
| dot_precision@10      | 0.118      |
| dot_recall@1          | 0.1801     |
| dot_recall@3          | 0.3399     |
| dot_recall@5          | 0.4152     |
| dot_recall@10         | 0.5011     |
| **dot_ndcg@10**       | **0.4016** |
| dot_mrr@10            | 0.4195     |
| dot_map@100           | 0.3082     |
| query_active_dims     | 138.12     |
| query_sparsity_ratio  | 0.9955     |
| corpus_active_dims    | 346.3697   |
| corpus_sparsity_ratio | 0.9887     |

#### Sparse Nano BEIR

* Dataset: `NanoBEIR_mean`
* Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "climatefever",
          "dbpedia",
          "fever",
          "fiqa2018",
          "hotpotqa",
          "msmarco",
          "nfcorpus",
          "nq",
          "quoraretrieval",
          "scidocs",
          "arguana",
          "scifact",
          "touche2020"
      ]
  }
  ```

| Metric                | Value      |
|:----------------------|:-----------|
| dot_accuracy@1        | 0.4302     |
| dot_accuracy@3        | 0.6182     |
| dot_accuracy@5        | 0.6783     |
| dot_accuracy@10       | 0.7722     |
| dot_precision@1       | 0.4302     |
| dot_precision@3       | 0.2742     |
| dot_precision@5       | 0.2152     |
| dot_precision@10      | 0.1564     |
| dot_recall@1          | 0.2433     |
| dot_recall@3          | 0.3891     |
| dot_recall@5          | 0.4466     |
| dot_recall@10         | 0.5378     |
| **dot_ndcg@10**       | **0.4809** |
| dot_mrr@10            | 0.5383     |
| dot_map@100           | 0.4055     |
| query_active_dims     | 161.5901   |
| query_sparsity_ratio  | 0.9947     |
| corpus_active_dims    | 302.8481   |
| corpus_sparsity_ratio | 0.9901     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 99,000 training samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.79 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.02 tokens</li><li>max: 153 tokens</li></ul> |
* Samples:
  | question                                                                           | answer                                                                                                                                                                                                                                                                                                         |
  |:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>what are the 5 characteristics of a star?</code>                             | <code>Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.</code>                                                                                                                                                                                |
  | <code>are copic markers alcohol ink?</code>                                        | <code>Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.</code>                                                                                                                                                                                                |
  | <code>what is the difference between appellate term and appellate division?</code> | <code>Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 3e-05,
      "lambda_query": 5e-05
  }
  ```

### Evaluation Dataset

#### gooaq

* Dataset: [gooaq](https://huggingface.co/datasets/sentence-transformers/gooaq) at [b089f72](https://huggingface.co/datasets/sentence-transformers/gooaq/tree/b089f728748a068b7bc5234e5bcf5b25e3c8279c)
* Size: 1,000 evaluation samples
* Columns: <code>question</code> and <code>answer</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | answer                                                                              |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 8 tokens</li><li>mean: 11.93 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.84 tokens</li><li>max: 127 tokens</li></ul> |
* Samples:
  | question                                                         | answer                                                                                                                                                                                                                                                                                                                                                        |
  |:-----------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>should you take ibuprofen with high blood pressure?</code> | <code>In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.</code>                           |
  | <code>how old do you have to be to work in sc?</code>            | <code>The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.</code>                                                                       |
  | <code>how to write a topic proposal for a research paper?</code> | <code>['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']</code> |
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
  ```json
  {
      "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
      "lambda_corpus": 3e-05,
      "lambda_query": 5e-05
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `learning_rate`: 2e-05
- `num_train_epochs`: 1
- `bf16`: True
- `load_best_model_at_end`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step     | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
|:----------:|:--------:|:-------------:|:---------------:|:-----------------------:|:------------------------:|:------------------:|:-------------------------:|:----------------------------:|:-----------------------:|:---------------------:|:------------------------:|:------------------------:|:------------------------------:|:-----------------------:|:-----------------------:|:-----------------------:|:--------------------------:|
| 0.0323     | 100      | 15.2006       | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0646     | 200      | 0.2384        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.0970     | 300      | 0.1932        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1293     | 400      | 0.1428        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1616     | 500      | 0.144         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1939     | 600      | 0.1345        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.1972     | 610      | -             | 0.1199          | 0.4364                  | 0.2195                   | 0.4998             | 0.3853                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2262     | 700      | 0.1406        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2586     | 800      | 0.1012        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.2909     | 900      | 0.112         | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3232     | 1000     | 0.0736        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3555     | 1100     | 0.0943        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3878     | 1200     | 0.0901        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.3943     | 1220     | -             | 0.1126          | 0.4706                  | 0.2490                   | 0.5154             | 0.4117                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4202     | 1300     | 0.0988        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4525     | 1400     | 0.0953        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.4848     | 1500     | 0.1145        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5171     | 1600     | 0.0928        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5495     | 1700     | 0.0963        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5818     | 1800     | 0.0724        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.5915     | 1830     | -             | 0.0736          | 0.4576                  | 0.2457                   | 0.5015             | 0.4016                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6141     | 1900     | 0.0753        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6464     | 2000     | 0.0657        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.6787     | 2100     | 0.0741        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7111     | 2200     | 0.0671        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7434     | 2300     | 0.1013        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.7757     | 2400     | 0.0795        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| **0.7886** | **2440** | **-**         | **0.0719**      | **0.4785**              | **0.2816**               | **0.519**          | **0.4264**                | **-**                        | **-**                   | **-**                 | **-**                    | **-**                    | **-**                          | **-**                   | **-**                   | **-**                   | **-**                      |
| 0.8080     | 2500     | 0.0666        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8403     | 2600     | 0.0589        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.8727     | 2700     | 0.0569        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9050     | 2800     | 0.0754        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9373     | 2900     | 0.0724        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9696     | 3000     | 0.0658        | -               | -                       | -                        | -                  | -                         | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| 0.9858     | 3050     | -             | 0.0661          | 0.4447                  | 0.2587                   | 0.5014             | 0.4016                    | -                            | -                       | -                     | -                        | -                        | -                              | -                       | -                       | -                       | -                          |
| -1         | -1       | -             | -               | 0.4785                  | 0.2816                   | 0.5190             | 0.4809                    | 0.2528                       | 0.4305                  | 0.7203                | 0.3784                   | 0.6986                   | 0.7379                         | 0.3073                  | 0.3141                  | 0.6331                  | 0.4998                     |

* The bold row denotes the saved checkpoint.

### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Energy Consumed**: 0.019 kWh
- **Carbon Emitted**: 0.001 kg of CO2
- **Hours Used**: 0.174 hours

### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
- **CPU Model**: AMD Ryzen 9 6900HX with Radeon Graphics
- **RAM Size**: 30.61 GB

### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### SpladeLoss
```bibtex
@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}
```

#### SparseMultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

#### FlopsLoss
```bibtex
@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->