splade-distilbert-base-uncased trained on GooAQ

This is a SPLADE Sparse Encoder model finetuned from distilbert/distilbert-base-uncased on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: distilbert/distilbert-base-uncased
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: DistilBertForMaskedLM 
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-distilbert-base-uncased-gooaq")
# Run inference
sentences = [
    'how many days for doxycycline to work on sinus infection?',
    'Treatment of suspected bacterial infection is with antibiotics, such as amoxicillin/clavulanate or doxycycline, given for 5 to 7 days for acute sinusitis and for up to 6 weeks for chronic sinusitis.',
    'Most engagements typically have a cocktail dress code, calling for dresses at, or slightly above, knee-length and high heels. If your party states a different dress code, however, such as semi-formal or dressy-casual, you may need to dress up or down accordingly.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# (3, 30522)

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.24 0.38 0.36 0.26 0.54 0.56 0.36 0.66 0.58 0.4 0.1 0.54 0.6122
dot_accuracy@3 0.5 0.5 0.58 0.4 0.68 0.78 0.52 0.86 0.76 0.58 0.38 0.64 0.8571
dot_accuracy@5 0.58 0.52 0.66 0.42 0.76 0.86 0.54 0.92 0.86 0.66 0.46 0.66 0.9184
dot_accuracy@10 0.72 0.66 0.72 0.64 0.9 0.92 0.62 0.92 0.94 0.74 0.54 0.78 0.9388
dot_precision@1 0.24 0.38 0.36 0.26 0.54 0.56 0.36 0.66 0.58 0.4 0.1 0.54 0.6122
dot_precision@3 0.1667 0.2933 0.1933 0.14 0.4333 0.26 0.2467 0.4333 0.26 0.2533 0.1267 0.22 0.5374
dot_precision@5 0.116 0.268 0.136 0.092 0.4 0.172 0.168 0.288 0.184 0.228 0.092 0.144 0.5102
dot_precision@10 0.072 0.228 0.078 0.08 0.36 0.096 0.106 0.156 0.112 0.154 0.054 0.086 0.451
dot_recall@1 0.24 0.0398 0.34 0.13 0.0473 0.5467 0.1886 0.33 0.57 0.0847 0.1 0.505 0.0413
dot_recall@3 0.5 0.0584 0.54 0.18 0.0914 0.7467 0.3217 0.65 0.7233 0.1587 0.38 0.6 0.1085
dot_recall@5 0.58 0.0766 0.63 0.19 0.1226 0.8067 0.3532 0.72 0.8233 0.2357 0.46 0.635 0.1729
dot_recall@10 0.72 0.11 0.69 0.3073 0.2466 0.8767 0.4552 0.78 0.8953 0.3167 0.54 0.76 0.2942
dot_ndcg@10 0.4785 0.2816 0.519 0.2528 0.4305 0.7203 0.3784 0.6986 0.7379 0.3073 0.3141 0.6331 0.4998
dot_mrr@10 0.4017 0.4572 0.4758 0.3483 0.6441 0.6844 0.4432 0.7597 0.6864 0.5031 0.2419 0.6099 0.7427
dot_map@100 0.414 0.1143 0.4691 0.195 0.324 0.6648 0.3198 0.6326 0.6882 0.2314 0.2545 0.5921 0.3718
query_active_dims 109.7 140.06 115.3 215.4 147.72 201.54 87.62 131.76 56.7 219.98 392.4 239.02 41.0612
query_sparsity_ratio 0.9964 0.9954 0.9962 0.9929 0.9952 0.9934 0.9971 0.9957 0.9981 0.9928 0.9871 0.9922 0.9987
corpus_active_dims 265.6181 371.9038 336.9138 334.8184 295.1452 374.9946 275.468 330.989 63.4294 370.2647 371.9895 362.6149 307.7058
corpus_sparsity_ratio 0.9913 0.9878 0.989 0.989 0.9903 0.9877 0.991 0.9892 0.9979 0.9879 0.9878 0.9881 0.9899

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.3
dot_accuracy@3 0.5
dot_accuracy@5 0.58
dot_accuracy@10 0.6733
dot_precision@1 0.3
dot_precision@3 0.2067
dot_precision@5 0.1733
dot_precision@10 0.118
dot_recall@1 0.1801
dot_recall@3 0.3399
dot_recall@5 0.4152
dot_recall@10 0.5011
dot_ndcg@10 0.4016
dot_mrr@10 0.4195
dot_map@100 0.3082
query_active_dims 138.12
query_sparsity_ratio 0.9955
corpus_active_dims 346.3697
corpus_sparsity_ratio 0.9887

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4302
dot_accuracy@3 0.6182
dot_accuracy@5 0.6783
dot_accuracy@10 0.7722
dot_precision@1 0.4302
dot_precision@3 0.2742
dot_precision@5 0.2152
dot_precision@10 0.1564
dot_recall@1 0.2433
dot_recall@3 0.3891
dot_recall@5 0.4466
dot_recall@10 0.5378
dot_ndcg@10 0.4809
dot_mrr@10 0.5383
dot_map@100 0.4055
query_active_dims 161.5901
query_sparsity_ratio 0.9947
corpus_active_dims 302.8481
corpus_sparsity_ratio 0.9901

Training Details

Training Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 99,000 training samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.79 tokens
    • max: 24 tokens
    • min: 14 tokens
    • mean: 60.02 tokens
    • max: 153 tokens
  • Samples:
    question answer
    what are the 5 characteristics of a star? Key Concept: Characteristics used to classify stars include color, temperature, size, composition, and brightness.
    are copic markers alcohol ink? Copic Ink is alcohol-based and flammable. Keep away from direct sunlight and extreme temperatures.
    what is the difference between appellate term and appellate division? Appellate terms An appellate term is an intermediate appellate court that hears appeals from the inferior courts within their designated counties or judicial districts, and are intended to ease the workload on the Appellate Division and provide a less expensive forum closer to the people.
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Evaluation Dataset

gooaq

  • Dataset: gooaq at b089f72
  • Size: 1,000 evaluation samples
  • Columns: question and answer
  • Approximate statistics based on the first 1000 samples:
    question answer
    type string string
    details
    • min: 8 tokens
    • mean: 11.93 tokens
    • max: 25 tokens
    • min: 14 tokens
    • mean: 60.84 tokens
    • max: 127 tokens
  • Samples:
    question answer
    should you take ibuprofen with high blood pressure? In general, people with high blood pressure should use acetaminophen or possibly aspirin for over-the-counter pain relief. Unless your health care provider has said it's OK, you should not use ibuprofen, ketoprofen, or naproxen sodium. If aspirin or acetaminophen doesn't help with your pain, call your doctor.
    how old do you have to be to work in sc? The general minimum age of employment for South Carolina youth is 14, although the state allows younger children who are performers to work in show business. If their families are agricultural workers, children younger than age 14 may also participate in farm labor.
    how to write a topic proposal for a research paper? ['Write down the main topic of your paper. ... ', 'Write two or three short sentences under the main topic that explain why you chose that topic. ... ', 'Write a thesis sentence that states the angle and purpose of your research paper. ... ', 'List the items you will cover in the body of the paper that support your thesis statement.']
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score')",
        "lambda_corpus": 3e-05,
        "lambda_query": 5e-05
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 1
  • bf16: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • tp_size: 0
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0323 100 15.2006 - - - - - - - - - - - - - - -
0.0646 200 0.2384 - - - - - - - - - - - - - - -
0.0970 300 0.1932 - - - - - - - - - - - - - - -
0.1293 400 0.1428 - - - - - - - - - - - - - - -
0.1616 500 0.144 - - - - - - - - - - - - - - -
0.1939 600 0.1345 - - - - - - - - - - - - - - -
0.1972 610 - 0.1199 0.4364 0.2195 0.4998 0.3853 - - - - - - - - - -
0.2262 700 0.1406 - - - - - - - - - - - - - - -
0.2586 800 0.1012 - - - - - - - - - - - - - - -
0.2909 900 0.112 - - - - - - - - - - - - - - -
0.3232 1000 0.0736 - - - - - - - - - - - - - - -
0.3555 1100 0.0943 - - - - - - - - - - - - - - -
0.3878 1200 0.0901 - - - - - - - - - - - - - - -
0.3943 1220 - 0.1126 0.4706 0.2490 0.5154 0.4117 - - - - - - - - - -
0.4202 1300 0.0988 - - - - - - - - - - - - - - -
0.4525 1400 0.0953 - - - - - - - - - - - - - - -
0.4848 1500 0.1145 - - - - - - - - - - - - - - -
0.5171 1600 0.0928 - - - - - - - - - - - - - - -
0.5495 1700 0.0963 - - - - - - - - - - - - - - -
0.5818 1800 0.0724 - - - - - - - - - - - - - - -
0.5915 1830 - 0.0736 0.4576 0.2457 0.5015 0.4016 - - - - - - - - - -
0.6141 1900 0.0753 - - - - - - - - - - - - - - -
0.6464 2000 0.0657 - - - - - - - - - - - - - - -
0.6787 2100 0.0741 - - - - - - - - - - - - - - -
0.7111 2200 0.0671 - - - - - - - - - - - - - - -
0.7434 2300 0.1013 - - - - - - - - - - - - - - -
0.7757 2400 0.0795 - - - - - - - - - - - - - - -
0.7886 2440 - 0.0719 0.4785 0.2816 0.519 0.4264 - - - - - - - - - -
0.8080 2500 0.0666 - - - - - - - - - - - - - - -
0.8403 2600 0.0589 - - - - - - - - - - - - - - -
0.8727 2700 0.0569 - - - - - - - - - - - - - - -
0.9050 2800 0.0754 - - - - - - - - - - - - - - -
0.9373 2900 0.0724 - - - - - - - - - - - - - - -
0.9696 3000 0.0658 - - - - - - - - - - - - - - -
0.9858 3050 - 0.0661 0.4447 0.2587 0.5014 0.4016 - - - - - - - - - -
-1 -1 - - 0.4785 0.2816 0.5190 0.4809 0.2528 0.4305 0.7203 0.3784 0.6986 0.7379 0.3073 0.3141 0.6331 0.4998
  • The bold row denotes the saved checkpoint.

Environmental Impact

Carbon emissions were measured using CodeCarbon.

  • Energy Consumed: 0.019 kWh
  • Carbon Emitted: 0.001 kg of CO2
  • Hours Used: 0.174 hours

Training Hardware

  • On Cloud: No
  • GPU Model: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU
  • CPU Model: AMD Ryzen 9 6900HX with Radeon Graphics
  • RAM Size: 30.61 GB

Framework Versions

  • Python: 3.12.9
  • Sentence Transformers: 4.2.0.dev0
  • Transformers: 4.50.3
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.6.0
  • Datasets: 3.5.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
    }
Downloads last month
16
Safetensors
Model size
67M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for sparse-encoder/example-splade-distilbert-base-uncased-gooaq

Finetuned
(9027)
this model

Dataset used to train sparse-encoder/example-splade-distilbert-base-uncased-gooaq

Evaluation results