|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
tags: |
|
- sentence-transformers |
|
- sparse-encoder |
|
- sparse |
|
- splade |
|
- generated_from_trainer |
|
- dataset_size:10000 |
|
- loss:SpladeLoss |
|
- loss:SparseMultipleNegativesRankingLoss |
|
- loss:FlopsLoss |
|
base_model: naver/splade-cocondenser-ensembledistil |
|
widget: |
|
- text: Two kids at a ballgame wash their hands. |
|
- text: Two dogs near a lake, while a person rides by on a horse. |
|
- text: This mother and her daughter and granddaughter are having car trouble, and |
|
the poor little girl looks hot out in the heat. |
|
- text: A young man competes in the Olympics in the pole vaulting competition. |
|
- text: A man is playing with the brass pots |
|
datasets: |
|
- sentence-transformers/all-nli |
|
pipeline_tag: feature-extraction |
|
library_name: sentence-transformers |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- active_dims |
|
- sparsity_ratio |
|
co2_eq_emissions: |
|
emissions: 0.16583474956305416 |
|
energy_consumed: 0.0029592738907377744 |
|
source: codecarbon |
|
training_type: fine-tuning |
|
on_cloud: false |
|
cpu_model: AMD Ryzen 9 6900HX with Radeon Graphics |
|
ram_total_size: 30.6114501953125 |
|
hours_used: 0.025 |
|
hardware_used: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU |
|
model-index: |
|
- name: splade-cocondenser-ensembledistil trained on Natural Language Inference (NLI) |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts dev |
|
type: sts-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8553775938865431 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8486465022828363 |
|
name: Spearman Cosine |
|
- type: active_dims |
|
value: 99.12466812133789 |
|
name: Active Dims |
|
- type: sparsity_ratio |
|
value: 0.9967523534459951 |
|
name: Sparsity Ratio |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: sts test |
|
type: sts-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.8223180736705796 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8068358333807579 |
|
name: Spearman Cosine |
|
- type: active_dims |
|
value: 95.42276763916016 |
|
name: Active Dims |
|
- type: sparsity_ratio |
|
value: 0.9968736397470952 |
|
name: Sparsity Ratio |
|
--- |
|
|
|
# splade-cocondenser-ensembledistil trained on Natural Language Inference (NLI) |
|
|
|
This is a [SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [naver/splade-cocondenser-ensembledistil](https://huggingface.co/naver/splade-cocondenser-ensembledistil) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval. |
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SPLADE Sparse Encoder |
|
- **Base model:** [naver/splade-cocondenser-ensembledistil](https://huggingface.co/naver/splade-cocondenser-ensembledistil) <!-- at revision 25178a62708a3ab1b5c4b5eb30764d65bfddcfbb --> |
|
- **Maximum Sequence Length:** 256 tokens |
|
- **Output Dimensionality:** 30522 dimensions |
|
- **Similarity Function:** Dot Product |
|
- **Training Dataset:** |
|
- [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SparseEncoder( |
|
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM |
|
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SparseEncoder |
|
|
|
# Download from the 🤗 Hub |
|
model = SparseEncoder("arthurbresnu/example-splade-cocondenser-ensembledistil-nli") |
|
# Run inference |
|
sentences = [ |
|
'A man is sitting in on the side of the street with brass pots.', |
|
'A man is playing with the brass pots', |
|
'A group of adults are swimming at the beach.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# (3, 30522) |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
|
|
* Datasets: `sts-dev` and `sts-test` |
|
* Evaluated with [<code>SparseEmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseEmbeddingSimilarityEvaluator) |
|
|
|
| Metric | sts-dev | sts-test | |
|
|:--------------------|:-----------|:-----------| |
|
| pearson_cosine | 0.8554 | 0.8223 | |
|
| **spearman_cosine** | **0.8486** | **0.8068** | |
|
| active_dims | 99.1247 | 95.4228 | |
|
| sparsity_ratio | 0.9968 | 0.9969 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### all-nli |
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 10,000 training samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:-----------------| |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>0.5</code> | |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>0.0</code> | |
|
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>1.0</code> | |
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "SparseMultipleNegativesRankingLoss(scale=1, similarity_fct='dot_score')", |
|
"lambda_corpus": 0.003 |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### all-nli |
|
|
|
* Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab) |
|
* Size: 1,000 evaluation samples |
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | sentence1 | sentence2 | score | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------| |
|
| type | string | string | float | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> | |
|
* Samples: |
|
| sentence1 | sentence2 | score | |
|
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:-----------------| |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>0.5</code> | |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>1.0</code> | |
|
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>0.0</code> | |
|
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "SparseMultipleNegativesRankingLoss(scale=1, similarity_fct='dot_score')", |
|
"lambda_corpus": 0.003 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `learning_rate`: 4e-06 |
|
- `num_train_epochs`: 1 |
|
- `bf16`: True |
|
- `load_best_model_at_end`: True |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 4e-06 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|:--------:|:-------:|:-------------:|:---------------:|:-----------------------:|:------------------------:| |
|
| -1 | -1 | - | - | 0.8366 | - | |
|
| 0.032 | 20 | 1.0832 | - | - | - | |
|
| 0.064 | 40 | 0.8212 | - | - | - | |
|
| 0.096 | 60 | 0.796 | - | - | - | |
|
| 0.128 | 80 | 0.7953 | - | - | - | |
|
| 0.16 | 100 | 0.7574 | - | - | - | |
|
| 0.192 | 120 | 0.6197 | 0.6750 | 0.8443 | - | |
|
| 0.224 | 140 | 0.7125 | - | - | - | |
|
| 0.256 | 160 | 0.817 | - | - | - | |
|
| 0.288 | 180 | 0.7309 | - | - | - | |
|
| 0.32 | 200 | 0.639 | - | - | - | |
|
| 0.352 | 220 | 0.6873 | - | - | - | |
|
| 0.384 | 240 | 0.6973 | 0.6253 | 0.8471 | - | |
|
| 0.416 | 260 | 0.7197 | - | - | - | |
|
| 0.448 | 280 | 0.5894 | - | - | - | |
|
| 0.48 | 300 | 0.6682 | - | - | - | |
|
| 0.512 | 320 | 0.6064 | - | - | - | |
|
| 0.544 | 340 | 0.648 | - | - | - | |
|
| 0.576 | 360 | 0.6344 | 0.6071 | 0.8483 | - | |
|
| 0.608 | 380 | 0.5742 | - | - | - | |
|
| 0.64 | 400 | 0.4962 | - | - | - | |
|
| 0.672 | 420 | 0.4863 | - | - | - | |
|
| 0.704 | 440 | 0.5547 | - | - | - | |
|
| 0.736 | 460 | 0.6097 | - | - | - | |
|
| 0.768 | 480 | 0.6307 | 0.6027 | 0.8471 | - | |
|
| 0.8 | 500 | 0.6226 | - | - | - | |
|
| 0.832 | 520 | 0.6607 | - | - | - | |
|
| 0.864 | 540 | 0.526 | - | - | - | |
|
| 0.896 | 560 | 0.6036 | - | - | - | |
|
| 0.928 | 580 | 0.5897 | - | - | - | |
|
| **0.96** | **600** | **0.6395** | **0.5892** | **0.8486** | **-** | |
|
| 0.992 | 620 | 0.6069 | - | - | - | |
|
| -1 | -1 | - | - | - | 0.8068 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Environmental Impact |
|
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). |
|
- **Energy Consumed**: 0.003 kWh |
|
- **Carbon Emitted**: 0.000 kg of CO2 |
|
- **Hours Used**: 0.025 hours |
|
|
|
### Training Hardware |
|
- **On Cloud**: No |
|
- **GPU Model**: 1 x NVIDIA GeForce RTX 3070 Ti Laptop GPU |
|
- **CPU Model**: AMD Ryzen 9 6900HX with Radeon Graphics |
|
- **RAM Size**: 30.61 GB |
|
|
|
### Framework Versions |
|
- Python: 3.12.9 |
|
- Sentence Transformers: 4.2.0.dev0 |
|
- Transformers: 4.50.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.5.0 |
|
- Tokenizers: 0.21.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### SpladeLoss |
|
```bibtex |
|
@misc{formal2022distillationhardnegativesampling, |
|
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective}, |
|
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant}, |
|
year={2022}, |
|
eprint={2205.04733}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR}, |
|
url={https://arxiv.org/abs/2205.04733}, |
|
} |
|
``` |
|
|
|
#### SparseMultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
#### FlopsLoss |
|
```bibtex |
|
@article{paria2020minimizing, |
|
title={Minimizing flops to learn efficient sparse representations}, |
|
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s}, |
|
journal={arXiv preprint arXiv:2004.05665}, |
|
year={2020} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |