File size: 4,233 Bytes
b2b50b7
2c52598
b2b50b7
 
74260a7
b2b50b7
2c52598
 
b2b50b7
2c52598
b2b50b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d52caef
2c52598
b2b50b7
 
 
 
 
 
 
2c52598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b2b50b7
 
 
 
 
 
2c52598
 
 
 
 
b2b50b7
2c52598
 
b2b50b7
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# app.py
from transformers import AutoTokenizer, AutoModelForCausalLM
import requests
import gradio as gr
import torch

# Load the Hugging Face model and tokenizer (only once)
model_name = "distilgpt2"  # Smaller and faster model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Groq API configuration
GROQ_API_KEY = "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"
GROQ_API_URL = "https://api.groq.com/v1/completions"

# Function to query Groq API
def query_groq(prompt):
    headers = {
        "Authorization": f"Bearer {GROQ_API_KEY}",
        "Content-Type": "application/json"
    }
    data = {
        "prompt": prompt,
        "max_tokens": 150
    }
    response = requests.post(GROQ_API_URL, headers=headers, json=data)
    return response.json()["choices"][0]["text"]

# Function to generate smart contract code
def generate_smart_contract(language, requirements):
    # Create a prompt for the model
    prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
    
    # Use the Hugging Face model to generate code
    inputs = tokenizer(prompt, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
    outputs = model.generate(**inputs, max_length=150)  # Reduced max_length
    generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
    
    # Enhance the code using Groq API
    enhanced_code = query_groq(generated_code)
    
    return enhanced_code

# Custom CSS for a 3D CGI Figma-like feel
custom_css = """
body {
    font-family: 'Helvetica Neue', Helvetica, Arial, sans-serif;
    background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
    color: #fff;
    perspective: 1000px;
    overflow: hidden;
}

.gradio-container {
    background: rgba(255, 255, 255, 0.1);
    border-radius: 15px;
    padding: 20px;
    box-shadow: 0 4px 30px rgba(0, 0, 0, 0.1);
    backdrop-filter: blur(10px);
    border: 1px solid rgba(255, 255, 255, 0.3);
    transform-style: preserve-3d;
    transform: rotateY(0deg) rotateX(0deg);
    transition: transform 0.5s ease;
}

.gradio-container:hover {
    transform: rotateY(10deg) rotateX(10deg);
}

.gradio-input, .gradio-output {
    background: rgba(255, 255, 255, 0.2);
    border: none;
    border-radius: 10px;
    padding: 10px;
    color: #fff;
    transform-style: preserve-3d;
    transition: transform 0.3s ease;
}

.gradio-input:focus, .gradio-output:focus {
    background: rgba(255, 255, 255, 0.3);
    outline: none;
    transform: translateZ(20px);
}

.gradio-button {
    background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
    border: none;
    border-radius: 10px;
    color: #fff;
    padding: 10px 20px;
    font-size: 16px;
    cursor: pointer;
    transition: background 0.3s ease, transform 0.3s ease;
    transform-style: preserve-3d;
}

.gradio-button:hover {
    background: linear-gradient(135deg, #2575fc 0%, #6a11cb 100%);
    transform: translateZ(10px);
}

h1 {
    text-align: center;
    font-size: 2.5em;
    margin-bottom: 20px;
    background: linear-gradient(135deg, #6a11cb 0%, #2575fc 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    transform-style: preserve-3d;
    transform: translateZ(30px);
}

@keyframes float {
    0% {
        transform: translateY(0) translateZ(0);
    }
    50% {
        transform: translateY(-10px) translateZ(10px);
    }
    100% {
        transform: translateY(0) translateZ(0);
    }
}

.gradio-container {
    animation: float 4s ease-in-out infinite;
}
"""

# Gradio interface for the app
def generate_contract(language, requirements):
    return generate_smart_contract(language, requirements)

interface = gr.Interface(
    fn=generate_contract,
    inputs=[
        gr.Textbox(label="Programming Language", placeholder="e.g., Solidity"),
        gr.Textbox(label="Requirements", placeholder="e.g., ERC20 token with minting functionality")
    ],
    outputs=gr.Textbox(label="Generated Smart Contract"),
    title="Smart Contract Generator",
    description="Generate smart contracts using AI.",
    css=custom_css
)

# Launch the Gradio app
if __name__ == "__main__":
    interface.launch()