Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,12 @@
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import requests
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
-
# Load the Hugging Face model and tokenizer
|
7 |
-
model_name = "
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
10 |
|
11 |
# Groq API configuration
|
12 |
GROQ_API_KEY = "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"
|
@@ -31,8 +32,8 @@ def generate_smart_contract(language, requirements):
|
|
31 |
prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
|
32 |
|
33 |
# Use the Hugging Face model to generate code
|
34 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
35 |
-
outputs = model.generate(**inputs, max_length=
|
36 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
37 |
|
38 |
# Enhance the code using Groq API
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import requests
|
4 |
import gradio as gr
|
5 |
+
import torch
|
6 |
|
7 |
+
# Load the Hugging Face model and tokenizer in 8-bit precision
|
8 |
+
model_name = "gpt2" # Smaller and faster model
|
9 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, load_in_8bit=True, device_map="auto")
|
11 |
|
12 |
# Groq API configuration
|
13 |
GROQ_API_KEY = "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"
|
|
|
32 |
prompt = f"Generate a {language} smart contract with the following requirements: {requirements}"
|
33 |
|
34 |
# Use the Hugging Face model to generate code
|
35 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Move inputs to GPU
|
36 |
+
outputs = model.generate(**inputs, max_length=300) # Reduced max_length
|
37 |
generated_code = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
38 |
|
39 |
# Enhance the code using Groq API
|