|
import torch |
|
import torch.nn as nn |
|
import torch.nn.parallel |
|
|
|
|
|
import os |
|
|
|
|
|
|
|
class ResidualBlock(nn.Module): |
|
def __init__(self, in_features=64, norm_layer=nn.BatchNorm2d): |
|
super(ResidualBlock, self).__init__() |
|
self.relu = nn.ReLU(True) |
|
if norm_layer == None: |
|
self.block = nn.Sequential( |
|
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), |
|
) |
|
else: |
|
self.block = nn.Sequential( |
|
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), |
|
norm_layer(in_features), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False), |
|
norm_layer(in_features) |
|
) |
|
|
|
def forward(self, x): |
|
residual = x |
|
out = self.block(x) |
|
out += residual |
|
out = self.relu(out) |
|
return out |
|
|
|
|
|
class ResUnetGenerator(nn.Module): |
|
def __init__(self, input_nc, output_nc, num_downs, ngf=64, |
|
norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(ResUnetGenerator, self).__init__() |
|
|
|
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True) |
|
|
|
for i in range(num_downs - 5): |
|
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout) |
|
unet_block = ResUnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = ResUnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = ResUnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer) |
|
unet_block = ResUnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer) |
|
|
|
self.model = unet_block |
|
|
|
def forward(self, input): |
|
return self.model(input) |
|
|
|
|
|
|
|
|
|
|
|
class ResUnetSkipConnectionBlock(nn.Module): |
|
def __init__(self, outer_nc, inner_nc, input_nc=None, |
|
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False): |
|
super(ResUnetSkipConnectionBlock, self).__init__() |
|
self.outermost = outermost |
|
use_bias = norm_layer == nn.InstanceNorm2d |
|
|
|
if input_nc is None: |
|
input_nc = outer_nc |
|
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=3, |
|
stride=2, padding=1, bias=use_bias) |
|
|
|
res_downconv = [ResidualBlock(inner_nc, norm_layer), ResidualBlock(inner_nc, norm_layer)] |
|
res_upconv = [ResidualBlock(outer_nc, norm_layer), ResidualBlock(outer_nc, norm_layer)] |
|
|
|
downrelu = nn.ReLU(True) |
|
uprelu = nn.ReLU(True) |
|
if norm_layer != None: |
|
downnorm = norm_layer(inner_nc) |
|
upnorm = norm_layer(outer_nc) |
|
|
|
if outermost: |
|
upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) |
|
down = [downconv, downrelu] + res_downconv |
|
up = [upsample, upconv] |
|
model = down + [submodule] + up |
|
elif innermost: |
|
upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) |
|
down = [downconv, downrelu] + res_downconv |
|
if norm_layer == None: |
|
up = [upsample, upconv, uprelu] + res_upconv |
|
else: |
|
up = [upsample, upconv, upnorm, uprelu] + res_upconv |
|
model = down + up |
|
else: |
|
upsample = nn.Upsample(scale_factor=2, mode='nearest') |
|
upconv = nn.Conv2d(inner_nc*2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias) |
|
if norm_layer == None: |
|
down = [downconv, downrelu] + res_downconv |
|
up = [upsample, upconv, uprelu] + res_upconv |
|
else: |
|
down = [downconv, downnorm, downrelu] + res_downconv |
|
up = [upsample, upconv, upnorm, uprelu] + res_upconv |
|
|
|
if use_dropout: |
|
model = down + [submodule] + up + [nn.Dropout(0.5)] |
|
else: |
|
model = down + [submodule] + up |
|
|
|
self.model = nn.Sequential(*model) |
|
|
|
def forward(self, x): |
|
if self.outermost: |
|
return self.model(x) |
|
else: |
|
return torch.cat([x, self.model(x)], 1) |
|
|
|
|
|
class Vgg19(nn.Module): |
|
def __init__(self, requires_grad=False): |
|
super(Vgg19, self).__init__() |
|
vgg_pretrained_features = models.vgg19(pretrained=True).features |
|
self.slice1 = nn.Sequential() |
|
self.slice2 = nn.Sequential() |
|
self.slice3 = nn.Sequential() |
|
self.slice4 = nn.Sequential() |
|
self.slice5 = nn.Sequential() |
|
for x in range(2): |
|
self.slice1.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(2, 7): |
|
self.slice2.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(7, 12): |
|
self.slice3.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(12, 21): |
|
self.slice4.add_module(str(x), vgg_pretrained_features[x]) |
|
for x in range(21, 30): |
|
self.slice5.add_module(str(x), vgg_pretrained_features[x]) |
|
if not requires_grad: |
|
for param in self.parameters(): |
|
param.requires_grad = False |
|
|
|
def forward(self, X): |
|
h_relu1 = self.slice1(X) |
|
h_relu2 = self.slice2(h_relu1) |
|
h_relu3 = self.slice3(h_relu2) |
|
h_relu4 = self.slice4(h_relu3) |
|
h_relu5 = self.slice5(h_relu4) |
|
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] |
|
return out |
|
|
|
class VGGLoss(nn.Module): |
|
def __init__(self, layids = None): |
|
super(VGGLoss, self).__init__() |
|
self.vgg = Vgg19() |
|
self.vgg.cuda() |
|
self.criterion = nn.L1Loss() |
|
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0] |
|
self.layids = layids |
|
|
|
def forward(self, x, y): |
|
x_vgg, y_vgg = self.vgg(x), self.vgg(y) |
|
loss = 0 |
|
if self.layids is None: |
|
self.layids = list(range(len(x_vgg))) |
|
for i in self.layids: |
|
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) |
|
return loss |
|
|
|
def save_checkpoint(model, save_path): |
|
if not os.path.exists(os.path.dirname(save_path)): |
|
os.makedirs(os.path.dirname(save_path)) |
|
torch.save(model.state_dict(), save_path) |
|
|
|
|
|
def load_checkpoint_parallel(model, checkpoint_path): |
|
|
|
if not os.path.exists(checkpoint_path): |
|
print('No checkpoint!') |
|
return |
|
|
|
checkpoint = torch.load(checkpoint_path, map_location='cuda:{}'.format(opt.local_rank)) |
|
checkpoint_new = model.state_dict() |
|
for param in checkpoint_new: |
|
checkpoint_new[param] = checkpoint[param] |
|
model.load_state_dict(checkpoint_new) |
|
|
|
def load_checkpoint_part_parallel(model, checkpoint_path): |
|
|
|
if not os.path.exists(checkpoint_path): |
|
print('No checkpoint!') |
|
return |
|
checkpoint = torch.load(checkpoint_path,map_location='cuda:{}'.format(opt.local_rank)) |
|
checkpoint_new = model.state_dict() |
|
for param in checkpoint_new: |
|
if 'cond_' not in param and 'aflow_net.netRefine' not in param or 'aflow_net.cond_style' in param: |
|
checkpoint_new[param] = checkpoint[param] |
|
model.load_state_dict(checkpoint_new) |
|
|
|
def load_checkpoint(model, checkpoint_path): |
|
|
|
if not os.path.exists(checkpoint_path): |
|
print('No checkpoint!') |
|
return |
|
|
|
checkpoint = torch.load(checkpoint_path) |
|
checkpoint_new = model.state_dict() |
|
for param in checkpoint_new: |
|
checkpoint_new[param] = checkpoint[param] |
|
|
|
model.load_state_dict(checkpoint_new) |
|
|
|
|
|
|