models
Browse files- models/__init__.py +1 -0
- models/__pycache__/__init__.cpython-310.pyc +0 -0
- models/__pycache__/__init__.cpython-38.pyc +0 -0
- models/__pycache__/afwm.cpython-310.pyc +0 -0
- models/__pycache__/afwm.cpython-38.pyc +0 -0
- models/__pycache__/networks.cpython-310.pyc +0 -0
- models/__pycache__/networks.cpython-38.pyc +0 -0
- models/afwm.py +502 -0
- models/networks.py +213 -0
- options/__init__.py +1 -0
- options/__pycache__/__init__.cpython-310.pyc +0 -0
- options/__pycache__/__init__.cpython-36.pyc +0 -0
- options/__pycache__/__init__.cpython-38.pyc +0 -0
- options/__pycache__/base_options.cpython-310.pyc +0 -0
- options/__pycache__/base_options.cpython-36.pyc +0 -0
- options/__pycache__/base_options.cpython-38.pyc +0 -0
- options/__pycache__/test_options.cpython-310.pyc +0 -0
- options/__pycache__/test_options.cpython-36.pyc +0 -0
- options/__pycache__/test_options.cpython-38.pyc +0 -0
- options/base_options.py +59 -0
- options/test_options.py +11 -0
- our_t_results/000001_0.jpg +0 -0
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# model_init
|
models/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (154 Bytes). View file
|
|
models/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (152 Bytes). View file
|
|
models/__pycache__/afwm.cpython-310.pyc
ADDED
Binary file (13.1 kB). View file
|
|
models/__pycache__/afwm.cpython-38.pyc
ADDED
Binary file (13.2 kB). View file
|
|
models/__pycache__/networks.cpython-310.pyc
ADDED
Binary file (6.31 kB). View file
|
|
models/__pycache__/networks.cpython-38.pyc
ADDED
Binary file (6.36 kB). View file
|
|
models/afwm.py
ADDED
@@ -0,0 +1,502 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import numpy as np
|
5 |
+
from math import sqrt
|
6 |
+
|
7 |
+
def apply_offset(offset):
|
8 |
+
sizes = list(offset.size()[2:])
|
9 |
+
grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes])
|
10 |
+
grid_list = reversed(grid_list)
|
11 |
+
# apply offset
|
12 |
+
grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...]
|
13 |
+
for dim, grid in enumerate(grid_list)]
|
14 |
+
# normalize
|
15 |
+
grid_list = [grid / ((size - 1.0) / 2.0) - 1.0
|
16 |
+
for grid, size in zip(grid_list, reversed(sizes))]
|
17 |
+
|
18 |
+
return torch.stack(grid_list, dim=-1)
|
19 |
+
|
20 |
+
|
21 |
+
def TVLoss(x):
|
22 |
+
tv_h = x[:, :, 1:, :] - x[:, :, :-1, :]
|
23 |
+
tv_w = x[:, :, :, 1:] - x[:, :, :, :-1]
|
24 |
+
|
25 |
+
return torch.mean(torch.abs(tv_h)) + torch.mean(torch.abs(tv_w))
|
26 |
+
|
27 |
+
|
28 |
+
# backbone
|
29 |
+
class EqualLR:
|
30 |
+
def __init__(self, name):
|
31 |
+
self.name = name
|
32 |
+
|
33 |
+
def compute_weight(self, module):
|
34 |
+
weight = getattr(module, self.name + '_orig')
|
35 |
+
fan_in = weight.data.size(1) * weight.data[0][0].numel()
|
36 |
+
|
37 |
+
return weight * sqrt(2 / fan_in)
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def apply(module, name):
|
41 |
+
fn = EqualLR(name)
|
42 |
+
|
43 |
+
weight = getattr(module, name)
|
44 |
+
del module._parameters[name]
|
45 |
+
module.register_parameter(name + '_orig', nn.Parameter(weight.data))
|
46 |
+
module.register_forward_pre_hook(fn)
|
47 |
+
|
48 |
+
return fn
|
49 |
+
|
50 |
+
def __call__(self, module, input):
|
51 |
+
weight = self.compute_weight(module)
|
52 |
+
setattr(module, self.name, weight)
|
53 |
+
|
54 |
+
|
55 |
+
def equal_lr(module, name='weight'):
|
56 |
+
EqualLR.apply(module, name)
|
57 |
+
|
58 |
+
return module
|
59 |
+
|
60 |
+
class EqualLinear(nn.Module):
|
61 |
+
def __init__(self, in_dim, out_dim):
|
62 |
+
super().__init__()
|
63 |
+
|
64 |
+
linear = nn.Linear(in_dim, out_dim)
|
65 |
+
linear.weight.data.normal_()
|
66 |
+
linear.bias.data.zero_()
|
67 |
+
|
68 |
+
self.linear = equal_lr(linear)
|
69 |
+
|
70 |
+
def forward(self, input):
|
71 |
+
return self.linear(input)
|
72 |
+
|
73 |
+
class ModulatedConv2d(nn.Module):
|
74 |
+
def __init__(self, fin, fout, kernel_size, padding_type='zero', upsample=False, downsample=False, latent_dim=512, normalize_mlp=False):
|
75 |
+
super(ModulatedConv2d, self).__init__()
|
76 |
+
self.in_channels = fin
|
77 |
+
self.out_channels = fout
|
78 |
+
self.kernel_size = kernel_size
|
79 |
+
padding_size = kernel_size // 2
|
80 |
+
|
81 |
+
if kernel_size == 1:
|
82 |
+
self.demudulate = False
|
83 |
+
else:
|
84 |
+
self.demudulate = True
|
85 |
+
|
86 |
+
self.weight = nn.Parameter(torch.Tensor(fout, fin, kernel_size, kernel_size))
|
87 |
+
self.bias = nn.Parameter(torch.Tensor(1, fout, 1, 1))
|
88 |
+
#self.conv = F.conv2d
|
89 |
+
|
90 |
+
if normalize_mlp:
|
91 |
+
self.mlp_class_std = nn.Sequential(EqualLinear(latent_dim, fin), PixelNorm())
|
92 |
+
else:
|
93 |
+
self.mlp_class_std = EqualLinear(latent_dim, fin)
|
94 |
+
|
95 |
+
#self.blur = Blur(fout)
|
96 |
+
|
97 |
+
if padding_type == 'reflect':
|
98 |
+
self.padding = nn.ReflectionPad2d(padding_size)
|
99 |
+
else:
|
100 |
+
self.padding = nn.ZeroPad2d(padding_size)
|
101 |
+
|
102 |
+
|
103 |
+
self.weight.data.normal_()
|
104 |
+
self.bias.data.zero_()
|
105 |
+
|
106 |
+
def forward(self, input, latent):
|
107 |
+
fan_in = self.weight.data.size(1) * self.weight.data[0][0].numel()
|
108 |
+
weight = self.weight * sqrt(2 / fan_in)
|
109 |
+
weight = weight.view(1, self.out_channels, self.in_channels, self.kernel_size, self.kernel_size)
|
110 |
+
|
111 |
+
s = self.mlp_class_std(latent).view(-1, 1, self.in_channels, 1, 1)
|
112 |
+
weight = s * weight
|
113 |
+
if self.demudulate:
|
114 |
+
d = torch.rsqrt((weight ** 2).sum(4).sum(3).sum(2) + 1e-5).view(-1, self.out_channels, 1, 1, 1)
|
115 |
+
weight = (d * weight).view(-1, self.in_channels, self.kernel_size, self.kernel_size)
|
116 |
+
else:
|
117 |
+
weight = weight.view(-1, self.in_channels, self.kernel_size, self.kernel_size)
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
batch,_,height,width = input.shape
|
122 |
+
#input = input.view(1,-1,h,w)
|
123 |
+
#input = self.padding(input)
|
124 |
+
#out = self.conv(input, weight, groups=b).view(b, self.out_channels, h, w) + self.bias
|
125 |
+
|
126 |
+
|
127 |
+
|
128 |
+
input = input.view(1,-1,height,width)
|
129 |
+
input = self.padding(input)
|
130 |
+
out = F.conv2d(input, weight, groups=batch).view(batch, self.out_channels, height, width) + self.bias
|
131 |
+
|
132 |
+
return out
|
133 |
+
|
134 |
+
|
135 |
+
class StyledConvBlock(nn.Module):
|
136 |
+
def __init__(self, fin, fout, latent_dim=256, padding='zero',
|
137 |
+
actvn='lrelu', normalize_affine_output=False, modulated_conv=False):
|
138 |
+
super(StyledConvBlock, self).__init__()
|
139 |
+
if not modulated_conv:
|
140 |
+
if padding == 'reflect':
|
141 |
+
padding_layer = nn.ReflectionPad2d
|
142 |
+
else:
|
143 |
+
padding_layer = nn.ZeroPad2d
|
144 |
+
|
145 |
+
if modulated_conv:
|
146 |
+
conv2d = ModulatedConv2d
|
147 |
+
else:
|
148 |
+
conv2d = EqualConv2d
|
149 |
+
|
150 |
+
if modulated_conv:
|
151 |
+
self.actvn_gain = sqrt(2)
|
152 |
+
else:
|
153 |
+
self.actvn_gain = 1.0
|
154 |
+
|
155 |
+
|
156 |
+
self.modulated_conv = modulated_conv
|
157 |
+
|
158 |
+
if actvn == 'relu':
|
159 |
+
activation = nn.ReLU(True)
|
160 |
+
else:
|
161 |
+
activation = nn.LeakyReLU(0.2,True)
|
162 |
+
|
163 |
+
|
164 |
+
if self.modulated_conv:
|
165 |
+
self.conv0 = conv2d(fin, fout, kernel_size=3, padding_type=padding, upsample=False,
|
166 |
+
latent_dim=latent_dim, normalize_mlp=normalize_affine_output)
|
167 |
+
else:
|
168 |
+
conv0 = conv2d(fin, fout, kernel_size=3)
|
169 |
+
|
170 |
+
seq0 = [padding_layer(1), conv0]
|
171 |
+
self.conv0 = nn.Sequential(*seq0)
|
172 |
+
|
173 |
+
self.actvn0 = activation
|
174 |
+
|
175 |
+
if self.modulated_conv:
|
176 |
+
self.conv1 = conv2d(fout, fout, kernel_size=3, padding_type=padding, downsample=False,
|
177 |
+
latent_dim=latent_dim, normalize_mlp=normalize_affine_output)
|
178 |
+
else:
|
179 |
+
conv1 = conv2d(fout, fout, kernel_size=3)
|
180 |
+
seq1 = [padding_layer(1), conv1]
|
181 |
+
self.conv1 = nn.Sequential(*seq1)
|
182 |
+
|
183 |
+
self.actvn1 = activation
|
184 |
+
|
185 |
+
def forward(self, input, latent=None):
|
186 |
+
if self.modulated_conv:
|
187 |
+
out = self.conv0(input,latent)
|
188 |
+
else:
|
189 |
+
out = self.conv0(input)
|
190 |
+
|
191 |
+
out = self.actvn0(out) * self.actvn_gain
|
192 |
+
|
193 |
+
if self.modulated_conv:
|
194 |
+
out = self.conv1(out,latent)
|
195 |
+
else:
|
196 |
+
out = self.conv1(out)
|
197 |
+
|
198 |
+
out = self.actvn1(out) * self.actvn_gain
|
199 |
+
|
200 |
+
return out
|
201 |
+
|
202 |
+
|
203 |
+
class Styled_F_ConvBlock(nn.Module):
|
204 |
+
def __init__(self, fin, fout, latent_dim=256, padding='zero',
|
205 |
+
actvn='lrelu', normalize_affine_output=False, modulated_conv=False):
|
206 |
+
super(Styled_F_ConvBlock, self).__init__()
|
207 |
+
if not modulated_conv:
|
208 |
+
if padding == 'reflect':
|
209 |
+
padding_layer = nn.ReflectionPad2d
|
210 |
+
else:
|
211 |
+
padding_layer = nn.ZeroPad2d
|
212 |
+
|
213 |
+
if modulated_conv:
|
214 |
+
conv2d = ModulatedConv2d
|
215 |
+
else:
|
216 |
+
conv2d = EqualConv2d
|
217 |
+
|
218 |
+
if modulated_conv:
|
219 |
+
self.actvn_gain = sqrt(2)
|
220 |
+
else:
|
221 |
+
self.actvn_gain = 1.0
|
222 |
+
|
223 |
+
|
224 |
+
self.modulated_conv = modulated_conv
|
225 |
+
|
226 |
+
if actvn == 'relu':
|
227 |
+
activation = nn.ReLU(True)
|
228 |
+
else:
|
229 |
+
activation = nn.LeakyReLU(0.2,True)
|
230 |
+
|
231 |
+
|
232 |
+
if self.modulated_conv:
|
233 |
+
self.conv0 = conv2d(fin, 128, kernel_size=3, padding_type=padding, upsample=False,
|
234 |
+
latent_dim=latent_dim, normalize_mlp=normalize_affine_output)
|
235 |
+
else:
|
236 |
+
conv0 = conv2d(fin, 128, kernel_size=3)
|
237 |
+
|
238 |
+
seq0 = [padding_layer(1), conv0]
|
239 |
+
self.conv0 = nn.Sequential(*seq0)
|
240 |
+
|
241 |
+
self.actvn0 = activation
|
242 |
+
|
243 |
+
if self.modulated_conv:
|
244 |
+
self.conv1 = conv2d(128, fout, kernel_size=3, padding_type=padding, downsample=False,
|
245 |
+
latent_dim=latent_dim, normalize_mlp=normalize_affine_output)
|
246 |
+
else:
|
247 |
+
conv1 = conv2d(128, fout, kernel_size=3)
|
248 |
+
seq1 = [padding_layer(1), conv1]
|
249 |
+
self.conv1 = nn.Sequential(*seq1)
|
250 |
+
|
251 |
+
#self.actvn1 = activation
|
252 |
+
|
253 |
+
def forward(self, input, latent=None):
|
254 |
+
if self.modulated_conv:
|
255 |
+
out = self.conv0(input,latent)
|
256 |
+
else:
|
257 |
+
out = self.conv0(input)
|
258 |
+
|
259 |
+
out = self.actvn0(out) * self.actvn_gain
|
260 |
+
|
261 |
+
if self.modulated_conv:
|
262 |
+
out = self.conv1(out,latent)
|
263 |
+
else:
|
264 |
+
out = self.conv1(out)
|
265 |
+
|
266 |
+
#out = self.actvn1(out) * self.actvn_gain
|
267 |
+
|
268 |
+
return out
|
269 |
+
|
270 |
+
|
271 |
+
class ResBlock(nn.Module):
|
272 |
+
def __init__(self, in_channels):
|
273 |
+
super(ResBlock, self).__init__()
|
274 |
+
self.block = nn.Sequential(
|
275 |
+
nn.BatchNorm2d(in_channels),
|
276 |
+
nn.ReLU(inplace=True),
|
277 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False),
|
278 |
+
nn.BatchNorm2d(in_channels),
|
279 |
+
nn.ReLU(inplace=True),
|
280 |
+
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False)
|
281 |
+
)
|
282 |
+
|
283 |
+
def forward(self, x):
|
284 |
+
return self.block(x) + x
|
285 |
+
|
286 |
+
|
287 |
+
class DownSample(nn.Module):
|
288 |
+
def __init__(self, in_channels, out_channels):
|
289 |
+
super(DownSample, self).__init__()
|
290 |
+
self.block= nn.Sequential(
|
291 |
+
nn.BatchNorm2d(in_channels),
|
292 |
+
nn.ReLU(inplace=True),
|
293 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False)
|
294 |
+
)
|
295 |
+
|
296 |
+
def forward(self, x):
|
297 |
+
return self.block(x)
|
298 |
+
|
299 |
+
|
300 |
+
|
301 |
+
class FeatureEncoder(nn.Module):
|
302 |
+
def __init__(self, in_channels, chns=[64,128,256,256,256]):
|
303 |
+
# in_channels = 3 for images, and is larger (e.g., 17+1+1) for agnositc representation
|
304 |
+
super(FeatureEncoder, self).__init__()
|
305 |
+
self.encoders = []
|
306 |
+
for i, out_chns in enumerate(chns):
|
307 |
+
if i == 0:
|
308 |
+
encoder = nn.Sequential(DownSample(in_channels, out_chns),
|
309 |
+
ResBlock(out_chns),
|
310 |
+
ResBlock(out_chns))
|
311 |
+
else:
|
312 |
+
encoder = nn.Sequential(DownSample(chns[i-1], out_chns),
|
313 |
+
ResBlock(out_chns),
|
314 |
+
ResBlock(out_chns))
|
315 |
+
|
316 |
+
self.encoders.append(encoder)
|
317 |
+
|
318 |
+
self.encoders = nn.ModuleList(self.encoders)
|
319 |
+
|
320 |
+
|
321 |
+
def forward(self, x):
|
322 |
+
encoder_features = []
|
323 |
+
for encoder in self.encoders:
|
324 |
+
x = encoder(x)
|
325 |
+
encoder_features.append(x)
|
326 |
+
return encoder_features
|
327 |
+
|
328 |
+
class RefinePyramid(nn.Module):
|
329 |
+
def __init__(self, chns=[64,128,256,256,256], fpn_dim=256):
|
330 |
+
super(RefinePyramid, self).__init__()
|
331 |
+
self.chns = chns
|
332 |
+
|
333 |
+
# adaptive
|
334 |
+
self.adaptive = []
|
335 |
+
for in_chns in list(reversed(chns)):
|
336 |
+
adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1)
|
337 |
+
self.adaptive.append(adaptive_layer)
|
338 |
+
self.adaptive = nn.ModuleList(self.adaptive)
|
339 |
+
# output conv
|
340 |
+
self.smooth = []
|
341 |
+
for i in range(len(chns)):
|
342 |
+
smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1)
|
343 |
+
self.smooth.append(smooth_layer)
|
344 |
+
self.smooth = nn.ModuleList(self.smooth)
|
345 |
+
|
346 |
+
def forward(self, x):
|
347 |
+
conv_ftr_list = x
|
348 |
+
|
349 |
+
feature_list = []
|
350 |
+
last_feature = None
|
351 |
+
for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))):
|
352 |
+
# adaptive
|
353 |
+
feature = self.adaptive[i](conv_ftr)
|
354 |
+
# fuse
|
355 |
+
if last_feature is not None:
|
356 |
+
feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest')
|
357 |
+
# smooth
|
358 |
+
feature = self.smooth[i](feature)
|
359 |
+
last_feature = feature
|
360 |
+
feature_list.append(feature)
|
361 |
+
|
362 |
+
return tuple(reversed(feature_list))
|
363 |
+
|
364 |
+
|
365 |
+
class AFlowNet(nn.Module):
|
366 |
+
def __init__(self, num_pyramid, fpn_dim=256):
|
367 |
+
super(AFlowNet, self).__init__()
|
368 |
+
|
369 |
+
padding_type='zero'
|
370 |
+
actvn = 'lrelu'
|
371 |
+
normalize_mlp = False
|
372 |
+
modulated_conv = True
|
373 |
+
|
374 |
+
|
375 |
+
self.netRefine = []
|
376 |
+
|
377 |
+
self.netStyle = []
|
378 |
+
|
379 |
+
self.netF = []
|
380 |
+
|
381 |
+
for i in range(num_pyramid):
|
382 |
+
|
383 |
+
netRefine_layer = torch.nn.Sequential(
|
384 |
+
torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1),
|
385 |
+
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
386 |
+
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1),
|
387 |
+
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
388 |
+
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1),
|
389 |
+
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1),
|
390 |
+
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1)
|
391 |
+
)
|
392 |
+
|
393 |
+
style_block = StyledConvBlock(256, 49, latent_dim=256,
|
394 |
+
padding=padding_type, actvn=actvn,
|
395 |
+
normalize_affine_output=normalize_mlp,
|
396 |
+
modulated_conv=modulated_conv)
|
397 |
+
|
398 |
+
style_F_block = Styled_F_ConvBlock(49, 2, latent_dim=256,
|
399 |
+
padding=padding_type, actvn=actvn,
|
400 |
+
normalize_affine_output=normalize_mlp,
|
401 |
+
modulated_conv=modulated_conv)
|
402 |
+
|
403 |
+
|
404 |
+
self.netRefine.append(netRefine_layer)
|
405 |
+
self.netStyle.append(style_block)
|
406 |
+
self.netF.append(style_F_block)
|
407 |
+
|
408 |
+
|
409 |
+
self.netRefine = nn.ModuleList(self.netRefine)
|
410 |
+
self.netStyle = nn.ModuleList(self.netStyle)
|
411 |
+
self.netF = nn.ModuleList(self.netF)
|
412 |
+
|
413 |
+
self.cond_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1))
|
414 |
+
|
415 |
+
self.image_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1))
|
416 |
+
|
417 |
+
|
418 |
+
def forward(self, x, x_warps, x_conds, warp_feature=True):
|
419 |
+
last_flow = None
|
420 |
+
|
421 |
+
B = x_conds[len(x_warps)-1].shape[0]
|
422 |
+
|
423 |
+
cond_style = self.cond_style(x_conds[len(x_warps) - 1]).view(B,-1)
|
424 |
+
image_style = self.image_style(x_warps[len(x_warps) - 1]).view(B,-1)
|
425 |
+
style = torch.cat([cond_style, image_style], 1)
|
426 |
+
|
427 |
+
for i in range(len(x_warps)):
|
428 |
+
x_warp = x_warps[len(x_warps) - 1 - i]
|
429 |
+
x_cond = x_conds[len(x_warps) - 1 - i]
|
430 |
+
|
431 |
+
if last_flow is not None and warp_feature:
|
432 |
+
x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1),
|
433 |
+
mode='bilinear', padding_mode='border')
|
434 |
+
else:
|
435 |
+
x_warp_after = x_warp
|
436 |
+
|
437 |
+
|
438 |
+
stylemap = self.netStyle[i](x_warp_after, style)
|
439 |
+
|
440 |
+
flow = self.netF[i](stylemap, style)
|
441 |
+
flow = apply_offset(flow)
|
442 |
+
if last_flow is not None:
|
443 |
+
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')
|
444 |
+
else:
|
445 |
+
flow = flow.permute(0, 3, 1, 2)
|
446 |
+
|
447 |
+
last_flow = flow
|
448 |
+
x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border')
|
449 |
+
concat = torch.cat([x_warp,x_cond],1)
|
450 |
+
flow = self.netRefine[i](concat)
|
451 |
+
flow = apply_offset(flow)
|
452 |
+
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border')
|
453 |
+
|
454 |
+
last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear')
|
455 |
+
|
456 |
+
|
457 |
+
x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1),
|
458 |
+
mode='bilinear', padding_mode='border')
|
459 |
+
return x_warp, last_flow
|
460 |
+
|
461 |
+
|
462 |
+
class AFWM(nn.Module):
|
463 |
+
|
464 |
+
def __init__(self, opt, input_nc):
|
465 |
+
super(AFWM, self).__init__()
|
466 |
+
num_filters = [64,128,256,256,256]
|
467 |
+
self.image_features = FeatureEncoder(3, num_filters)
|
468 |
+
self.cond_features = FeatureEncoder(input_nc, num_filters)
|
469 |
+
self.image_FPN = RefinePyramid(num_filters)
|
470 |
+
self.cond_FPN = RefinePyramid(num_filters)
|
471 |
+
self.aflow_net = AFlowNet(len(num_filters))
|
472 |
+
|
473 |
+
|
474 |
+
def forward(self, cond_input, image_input):
|
475 |
+
|
476 |
+
#import ipdb; ipdb.set_trace()
|
477 |
+
cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) # maybe use nn.Sequential
|
478 |
+
image_pyramids = self.image_FPN(self.image_features(image_input))
|
479 |
+
|
480 |
+
x_warp, last_flow = self.aflow_net(image_input, image_pyramids, cond_pyramids)
|
481 |
+
|
482 |
+
return x_warp, last_flow
|
483 |
+
|
484 |
+
|
485 |
+
def update_learning_rate(self,optimizer):
|
486 |
+
lrd = opt.lr / opt.niter_decay
|
487 |
+
lr = self.old_lr - lrd
|
488 |
+
for param_group in optimizer.param_groups:
|
489 |
+
param_group['lr'] = lr
|
490 |
+
if opt.verbose:
|
491 |
+
print('update learning rate: %f -> %f' % (self.old_lr, lr))
|
492 |
+
self.old_lr = lr
|
493 |
+
|
494 |
+
def update_learning_rate_warp(self,optimizer):
|
495 |
+
lrd = 0.2 * opt.lr / opt.niter_decay
|
496 |
+
lr = self.old_lr_warp - lrd
|
497 |
+
for param_group in optimizer.param_groups:
|
498 |
+
param_group['lr'] = lr
|
499 |
+
if opt.verbose:
|
500 |
+
print('update learning rate: %f -> %f' % (self.old_lr_warp, lr))
|
501 |
+
self.old_lr_warp = lr
|
502 |
+
|
models/networks.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.parallel
|
4 |
+
#from torchvision import models
|
5 |
+
#from options.train_options import TrainOptions
|
6 |
+
import os
|
7 |
+
|
8 |
+
#opt = TrainOptions().parse()
|
9 |
+
|
10 |
+
class ResidualBlock(nn.Module):
|
11 |
+
def __init__(self, in_features=64, norm_layer=nn.BatchNorm2d):
|
12 |
+
super(ResidualBlock, self).__init__()
|
13 |
+
self.relu = nn.ReLU(True)
|
14 |
+
if norm_layer == None:
|
15 |
+
self.block = nn.Sequential(
|
16 |
+
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
|
17 |
+
nn.ReLU(inplace=True),
|
18 |
+
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
|
19 |
+
)
|
20 |
+
else:
|
21 |
+
self.block = nn.Sequential(
|
22 |
+
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
|
23 |
+
norm_layer(in_features),
|
24 |
+
nn.ReLU(inplace=True),
|
25 |
+
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
|
26 |
+
norm_layer(in_features)
|
27 |
+
)
|
28 |
+
|
29 |
+
def forward(self, x):
|
30 |
+
residual = x
|
31 |
+
out = self.block(x)
|
32 |
+
out += residual
|
33 |
+
out = self.relu(out)
|
34 |
+
return out
|
35 |
+
|
36 |
+
|
37 |
+
class ResUnetGenerator(nn.Module):
|
38 |
+
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
|
39 |
+
norm_layer=nn.BatchNorm2d, use_dropout=False):
|
40 |
+
super(ResUnetGenerator, self).__init__()
|
41 |
+
# construct unet structure
|
42 |
+
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer, innermost=True)
|
43 |
+
|
44 |
+
for i in range(num_downs - 5):
|
45 |
+
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer, use_dropout=use_dropout)
|
46 |
+
unet_block = ResUnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
47 |
+
unet_block = ResUnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
48 |
+
unet_block = ResUnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
|
49 |
+
unet_block = ResUnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True, norm_layer=norm_layer)
|
50 |
+
|
51 |
+
self.model = unet_block
|
52 |
+
|
53 |
+
def forward(self, input):
|
54 |
+
return self.model(input)
|
55 |
+
|
56 |
+
|
57 |
+
# Defines the submodule with skip connection.
|
58 |
+
# X -------------------identity---------------------- X
|
59 |
+
# |-- downsampling -- |submodule| -- upsampling --|
|
60 |
+
class ResUnetSkipConnectionBlock(nn.Module):
|
61 |
+
def __init__(self, outer_nc, inner_nc, input_nc=None,
|
62 |
+
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
|
63 |
+
super(ResUnetSkipConnectionBlock, self).__init__()
|
64 |
+
self.outermost = outermost
|
65 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
66 |
+
|
67 |
+
if input_nc is None:
|
68 |
+
input_nc = outer_nc
|
69 |
+
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=3,
|
70 |
+
stride=2, padding=1, bias=use_bias)
|
71 |
+
# add two resblock
|
72 |
+
res_downconv = [ResidualBlock(inner_nc, norm_layer), ResidualBlock(inner_nc, norm_layer)]
|
73 |
+
res_upconv = [ResidualBlock(outer_nc, norm_layer), ResidualBlock(outer_nc, norm_layer)]
|
74 |
+
|
75 |
+
downrelu = nn.ReLU(True)
|
76 |
+
uprelu = nn.ReLU(True)
|
77 |
+
if norm_layer != None:
|
78 |
+
downnorm = norm_layer(inner_nc)
|
79 |
+
upnorm = norm_layer(outer_nc)
|
80 |
+
|
81 |
+
if outermost:
|
82 |
+
upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
83 |
+
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
|
84 |
+
down = [downconv, downrelu] + res_downconv
|
85 |
+
up = [upsample, upconv]
|
86 |
+
model = down + [submodule] + up
|
87 |
+
elif innermost:
|
88 |
+
upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
89 |
+
upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
|
90 |
+
down = [downconv, downrelu] + res_downconv
|
91 |
+
if norm_layer == None:
|
92 |
+
up = [upsample, upconv, uprelu] + res_upconv
|
93 |
+
else:
|
94 |
+
up = [upsample, upconv, upnorm, uprelu] + res_upconv
|
95 |
+
model = down + up
|
96 |
+
else:
|
97 |
+
upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
98 |
+
upconv = nn.Conv2d(inner_nc*2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
|
99 |
+
if norm_layer == None:
|
100 |
+
down = [downconv, downrelu] + res_downconv
|
101 |
+
up = [upsample, upconv, uprelu] + res_upconv
|
102 |
+
else:
|
103 |
+
down = [downconv, downnorm, downrelu] + res_downconv
|
104 |
+
up = [upsample, upconv, upnorm, uprelu] + res_upconv
|
105 |
+
|
106 |
+
if use_dropout:
|
107 |
+
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
108 |
+
else:
|
109 |
+
model = down + [submodule] + up
|
110 |
+
|
111 |
+
self.model = nn.Sequential(*model)
|
112 |
+
|
113 |
+
def forward(self, x):
|
114 |
+
if self.outermost:
|
115 |
+
return self.model(x)
|
116 |
+
else:
|
117 |
+
return torch.cat([x, self.model(x)], 1)
|
118 |
+
|
119 |
+
|
120 |
+
class Vgg19(nn.Module):
|
121 |
+
def __init__(self, requires_grad=False):
|
122 |
+
super(Vgg19, self).__init__()
|
123 |
+
vgg_pretrained_features = models.vgg19(pretrained=True).features
|
124 |
+
self.slice1 = nn.Sequential()
|
125 |
+
self.slice2 = nn.Sequential()
|
126 |
+
self.slice3 = nn.Sequential()
|
127 |
+
self.slice4 = nn.Sequential()
|
128 |
+
self.slice5 = nn.Sequential()
|
129 |
+
for x in range(2):
|
130 |
+
self.slice1.add_module(str(x), vgg_pretrained_features[x])
|
131 |
+
for x in range(2, 7):
|
132 |
+
self.slice2.add_module(str(x), vgg_pretrained_features[x])
|
133 |
+
for x in range(7, 12):
|
134 |
+
self.slice3.add_module(str(x), vgg_pretrained_features[x])
|
135 |
+
for x in range(12, 21):
|
136 |
+
self.slice4.add_module(str(x), vgg_pretrained_features[x])
|
137 |
+
for x in range(21, 30):
|
138 |
+
self.slice5.add_module(str(x), vgg_pretrained_features[x])
|
139 |
+
if not requires_grad:
|
140 |
+
for param in self.parameters():
|
141 |
+
param.requires_grad = False
|
142 |
+
|
143 |
+
def forward(self, X):
|
144 |
+
h_relu1 = self.slice1(X)
|
145 |
+
h_relu2 = self.slice2(h_relu1)
|
146 |
+
h_relu3 = self.slice3(h_relu2)
|
147 |
+
h_relu4 = self.slice4(h_relu3)
|
148 |
+
h_relu5 = self.slice5(h_relu4)
|
149 |
+
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
|
150 |
+
return out
|
151 |
+
|
152 |
+
class VGGLoss(nn.Module):
|
153 |
+
def __init__(self, layids = None):
|
154 |
+
super(VGGLoss, self).__init__()
|
155 |
+
self.vgg = Vgg19()
|
156 |
+
self.vgg.cuda()
|
157 |
+
self.criterion = nn.L1Loss()
|
158 |
+
self.weights = [1.0/32, 1.0/16, 1.0/8, 1.0/4, 1.0]
|
159 |
+
self.layids = layids
|
160 |
+
|
161 |
+
def forward(self, x, y):
|
162 |
+
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
|
163 |
+
loss = 0
|
164 |
+
if self.layids is None:
|
165 |
+
self.layids = list(range(len(x_vgg)))
|
166 |
+
for i in self.layids:
|
167 |
+
loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach())
|
168 |
+
return loss
|
169 |
+
|
170 |
+
def save_checkpoint(model, save_path):
|
171 |
+
if not os.path.exists(os.path.dirname(save_path)):
|
172 |
+
os.makedirs(os.path.dirname(save_path))
|
173 |
+
torch.save(model.state_dict(), save_path)
|
174 |
+
|
175 |
+
|
176 |
+
def load_checkpoint_parallel(model, checkpoint_path):
|
177 |
+
|
178 |
+
if not os.path.exists(checkpoint_path):
|
179 |
+
print('No checkpoint!')
|
180 |
+
return
|
181 |
+
|
182 |
+
checkpoint = torch.load(checkpoint_path, map_location='cuda:{}'.format(opt.local_rank))
|
183 |
+
checkpoint_new = model.state_dict()
|
184 |
+
for param in checkpoint_new:
|
185 |
+
checkpoint_new[param] = checkpoint[param]
|
186 |
+
model.load_state_dict(checkpoint_new)
|
187 |
+
|
188 |
+
def load_checkpoint_part_parallel(model, checkpoint_path):
|
189 |
+
|
190 |
+
if not os.path.exists(checkpoint_path):
|
191 |
+
print('No checkpoint!')
|
192 |
+
return
|
193 |
+
checkpoint = torch.load(checkpoint_path,map_location='cuda:{}'.format(opt.local_rank))
|
194 |
+
checkpoint_new = model.state_dict()
|
195 |
+
for param in checkpoint_new:
|
196 |
+
if 'cond_' not in param and 'aflow_net.netRefine' not in param or 'aflow_net.cond_style' in param:
|
197 |
+
checkpoint_new[param] = checkpoint[param]
|
198 |
+
model.load_state_dict(checkpoint_new)
|
199 |
+
|
200 |
+
def load_checkpoint(model, checkpoint_path):
|
201 |
+
|
202 |
+
if not os.path.exists(checkpoint_path):
|
203 |
+
print('No checkpoint!')
|
204 |
+
return
|
205 |
+
|
206 |
+
checkpoint = torch.load(checkpoint_path)
|
207 |
+
checkpoint_new = model.state_dict()
|
208 |
+
for param in checkpoint_new:
|
209 |
+
checkpoint_new[param] = checkpoint[param]
|
210 |
+
|
211 |
+
model.load_state_dict(checkpoint_new)
|
212 |
+
|
213 |
+
|
options/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# options_init
|
options/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (155 Bytes). View file
|
|
options/__pycache__/__init__.cpython-36.pyc
ADDED
Binary file (138 Bytes). View file
|
|
options/__pycache__/__init__.cpython-38.pyc
ADDED
Binary file (153 Bytes). View file
|
|
options/__pycache__/base_options.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
options/__pycache__/base_options.cpython-36.pyc
ADDED
Binary file (3.06 kB). View file
|
|
options/__pycache__/base_options.cpython-38.pyc
ADDED
Binary file (3.08 kB). View file
|
|
options/__pycache__/test_options.cpython-310.pyc
ADDED
Binary file (970 Bytes). View file
|
|
options/__pycache__/test_options.cpython-36.pyc
ADDED
Binary file (943 Bytes). View file
|
|
options/__pycache__/test_options.cpython-38.pyc
ADDED
Binary file (966 Bytes). View file
|
|
options/base_options.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import torch
|
3 |
+
|
4 |
+
class BaseOptions():
|
5 |
+
def __init__(self):
|
6 |
+
self.parser = argparse.ArgumentParser()
|
7 |
+
self.initialized = False
|
8 |
+
|
9 |
+
def initialize(self):
|
10 |
+
self.parser.add_argument('--name', type=str, default='demo', help='name of the experiment. It decides where to store samples and models')
|
11 |
+
self.parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU')
|
12 |
+
self.parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization')
|
13 |
+
self.parser.add_argument('--use_dropout', action='store_true', help='use dropout for the generator')
|
14 |
+
self.parser.add_argument('--data_type', default=32, type=int, choices=[8, 16, 32], help="Supported data type i.e. 8, 16, 32 bit")
|
15 |
+
self.parser.add_argument('--verbose', action='store_true', default=False, help='toggles verbose')
|
16 |
+
|
17 |
+
self.parser.add_argument('--batchSize', type=int, default=1, help='input batch size')
|
18 |
+
self.parser.add_argument('--loadSize', type=int, default=512, help='scale images to this size')
|
19 |
+
self.parser.add_argument('--fineSize', type=int, default=512, help='then crop to this size')
|
20 |
+
self.parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels')
|
21 |
+
self.parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels')
|
22 |
+
|
23 |
+
self.parser.add_argument('--dataroot', type=str,
|
24 |
+
default='/home/sh0089/sen/fashion/')
|
25 |
+
self.parser.add_argument('--resize_or_crop', type=str, default='scale_width', help='scaling and cropping of images at load time [resize_and_crop|crop|scale_width|scale_width_and_crop]')
|
26 |
+
self.parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly')
|
27 |
+
self.parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data argumentation')
|
28 |
+
self.parser.add_argument('--nThreads', default=1, type=int, help='# threads for loading data')
|
29 |
+
self.parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.')
|
30 |
+
|
31 |
+
self.parser.add_argument('--display_winsize', type=int, default=512, help='display window size')
|
32 |
+
self.parser.add_argument('--tf_log', action='store_true', help='if specified, use tensorboard logging. Requires tensorflow installed')
|
33 |
+
|
34 |
+
self.initialized = True
|
35 |
+
|
36 |
+
def parse(self, save=True):
|
37 |
+
if not self.initialized:
|
38 |
+
self.initialize()
|
39 |
+
self.opt = self.parser.parse_args()
|
40 |
+
self.opt.isTrain = self.isTrain # train or test
|
41 |
+
|
42 |
+
str_ids = self.opt.gpu_ids.split(',')
|
43 |
+
self.opt.gpu_ids = []
|
44 |
+
for str_id in str_ids:
|
45 |
+
id = int(str_id)
|
46 |
+
if id >= 0:
|
47 |
+
self.opt.gpu_ids.append(id)
|
48 |
+
|
49 |
+
if len(self.opt.gpu_ids) > 0:
|
50 |
+
torch.cuda.set_device(self.opt.gpu_ids[0])
|
51 |
+
|
52 |
+
args = vars(self.opt)
|
53 |
+
|
54 |
+
print('------------ Options -------------')
|
55 |
+
for k, v in sorted(args.items()):
|
56 |
+
print('%s: %s' % (str(k), str(v)))
|
57 |
+
print('-------------- End ----------------')
|
58 |
+
|
59 |
+
return self.opt
|
options/test_options.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .base_options import BaseOptions
|
2 |
+
|
3 |
+
class TestOptions(BaseOptions):
|
4 |
+
def initialize(self):
|
5 |
+
BaseOptions.initialize(self)
|
6 |
+
|
7 |
+
self.parser.add_argument('--warp_checkpoint', type=str, default='/home/sh0089/sen/PF-AFN/PF-AFN_train/checkpoints_ours_fc/PFAFN_e2e_ours/PFAFN_warp_epoch_101.pth', help='load the pretrained model from the specified location')
|
8 |
+
self.parser.add_argument('--gen_checkpoint', type=str, default='/home/sh0089/sen/PF-AFN/PF-AFN_train/checkpoints_ours_fc/PFAFN_e2e_ours/PFAFN_gen_epoch_101.pth', help='load the pretrained model from the specified location')
|
9 |
+
self.parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc')
|
10 |
+
|
11 |
+
self.isTrain = False
|
our_t_results/000001_0.jpg
ADDED
![]() |