|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from math import sqrt |
|
|
|
def apply_offset(offset): |
|
sizes = list(offset.size()[2:]) |
|
grid_list = torch.meshgrid([torch.arange(size, device=offset.device) for size in sizes]) |
|
grid_list = reversed(grid_list) |
|
|
|
grid_list = [grid.float().unsqueeze(0) + offset[:, dim, ...] |
|
for dim, grid in enumerate(grid_list)] |
|
|
|
grid_list = [grid / ((size - 1.0) / 2.0) - 1.0 |
|
for grid, size in zip(grid_list, reversed(sizes))] |
|
|
|
return torch.stack(grid_list, dim=-1) |
|
|
|
|
|
def TVLoss(x): |
|
tv_h = x[:, :, 1:, :] - x[:, :, :-1, :] |
|
tv_w = x[:, :, :, 1:] - x[:, :, :, :-1] |
|
|
|
return torch.mean(torch.abs(tv_h)) + torch.mean(torch.abs(tv_w)) |
|
|
|
|
|
|
|
class EqualLR: |
|
def __init__(self, name): |
|
self.name = name |
|
|
|
def compute_weight(self, module): |
|
weight = getattr(module, self.name + '_orig') |
|
fan_in = weight.data.size(1) * weight.data[0][0].numel() |
|
|
|
return weight * sqrt(2 / fan_in) |
|
|
|
@staticmethod |
|
def apply(module, name): |
|
fn = EqualLR(name) |
|
|
|
weight = getattr(module, name) |
|
del module._parameters[name] |
|
module.register_parameter(name + '_orig', nn.Parameter(weight.data)) |
|
module.register_forward_pre_hook(fn) |
|
|
|
return fn |
|
|
|
def __call__(self, module, input): |
|
weight = self.compute_weight(module) |
|
setattr(module, self.name, weight) |
|
|
|
|
|
def equal_lr(module, name='weight'): |
|
EqualLR.apply(module, name) |
|
|
|
return module |
|
|
|
class EqualLinear(nn.Module): |
|
def __init__(self, in_dim, out_dim): |
|
super().__init__() |
|
|
|
linear = nn.Linear(in_dim, out_dim) |
|
linear.weight.data.normal_() |
|
linear.bias.data.zero_() |
|
|
|
self.linear = equal_lr(linear) |
|
|
|
def forward(self, input): |
|
return self.linear(input) |
|
|
|
class ModulatedConv2d(nn.Module): |
|
def __init__(self, fin, fout, kernel_size, padding_type='zero', upsample=False, downsample=False, latent_dim=512, normalize_mlp=False): |
|
super(ModulatedConv2d, self).__init__() |
|
self.in_channels = fin |
|
self.out_channels = fout |
|
self.kernel_size = kernel_size |
|
padding_size = kernel_size // 2 |
|
|
|
if kernel_size == 1: |
|
self.demudulate = False |
|
else: |
|
self.demudulate = True |
|
|
|
self.weight = nn.Parameter(torch.Tensor(fout, fin, kernel_size, kernel_size)) |
|
self.bias = nn.Parameter(torch.Tensor(1, fout, 1, 1)) |
|
|
|
|
|
if normalize_mlp: |
|
self.mlp_class_std = nn.Sequential(EqualLinear(latent_dim, fin), PixelNorm()) |
|
else: |
|
self.mlp_class_std = EqualLinear(latent_dim, fin) |
|
|
|
|
|
|
|
if padding_type == 'reflect': |
|
self.padding = nn.ReflectionPad2d(padding_size) |
|
else: |
|
self.padding = nn.ZeroPad2d(padding_size) |
|
|
|
|
|
self.weight.data.normal_() |
|
self.bias.data.zero_() |
|
|
|
def forward(self, input, latent): |
|
fan_in = self.weight.data.size(1) * self.weight.data[0][0].numel() |
|
weight = self.weight * sqrt(2 / fan_in) |
|
weight = weight.view(1, self.out_channels, self.in_channels, self.kernel_size, self.kernel_size) |
|
|
|
s = self.mlp_class_std(latent).view(-1, 1, self.in_channels, 1, 1) |
|
weight = s * weight |
|
if self.demudulate: |
|
d = torch.rsqrt((weight ** 2).sum(4).sum(3).sum(2) + 1e-5).view(-1, self.out_channels, 1, 1, 1) |
|
weight = (d * weight).view(-1, self.in_channels, self.kernel_size, self.kernel_size) |
|
else: |
|
weight = weight.view(-1, self.in_channels, self.kernel_size, self.kernel_size) |
|
|
|
|
|
|
|
batch,_,height,width = input.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
input = input.view(1,-1,height,width) |
|
input = self.padding(input) |
|
out = F.conv2d(input, weight, groups=batch).view(batch, self.out_channels, height, width) + self.bias |
|
|
|
return out |
|
|
|
|
|
class StyledConvBlock(nn.Module): |
|
def __init__(self, fin, fout, latent_dim=256, padding='zero', |
|
actvn='lrelu', normalize_affine_output=False, modulated_conv=False): |
|
super(StyledConvBlock, self).__init__() |
|
if not modulated_conv: |
|
if padding == 'reflect': |
|
padding_layer = nn.ReflectionPad2d |
|
else: |
|
padding_layer = nn.ZeroPad2d |
|
|
|
if modulated_conv: |
|
conv2d = ModulatedConv2d |
|
else: |
|
conv2d = EqualConv2d |
|
|
|
if modulated_conv: |
|
self.actvn_gain = sqrt(2) |
|
else: |
|
self.actvn_gain = 1.0 |
|
|
|
|
|
self.modulated_conv = modulated_conv |
|
|
|
if actvn == 'relu': |
|
activation = nn.ReLU(True) |
|
else: |
|
activation = nn.LeakyReLU(0.2,True) |
|
|
|
|
|
if self.modulated_conv: |
|
self.conv0 = conv2d(fin, fout, kernel_size=3, padding_type=padding, upsample=False, |
|
latent_dim=latent_dim, normalize_mlp=normalize_affine_output) |
|
else: |
|
conv0 = conv2d(fin, fout, kernel_size=3) |
|
|
|
seq0 = [padding_layer(1), conv0] |
|
self.conv0 = nn.Sequential(*seq0) |
|
|
|
self.actvn0 = activation |
|
|
|
if self.modulated_conv: |
|
self.conv1 = conv2d(fout, fout, kernel_size=3, padding_type=padding, downsample=False, |
|
latent_dim=latent_dim, normalize_mlp=normalize_affine_output) |
|
else: |
|
conv1 = conv2d(fout, fout, kernel_size=3) |
|
seq1 = [padding_layer(1), conv1] |
|
self.conv1 = nn.Sequential(*seq1) |
|
|
|
self.actvn1 = activation |
|
|
|
def forward(self, input, latent=None): |
|
if self.modulated_conv: |
|
out = self.conv0(input,latent) |
|
else: |
|
out = self.conv0(input) |
|
|
|
out = self.actvn0(out) * self.actvn_gain |
|
|
|
if self.modulated_conv: |
|
out = self.conv1(out,latent) |
|
else: |
|
out = self.conv1(out) |
|
|
|
out = self.actvn1(out) * self.actvn_gain |
|
|
|
return out |
|
|
|
|
|
class Styled_F_ConvBlock(nn.Module): |
|
def __init__(self, fin, fout, latent_dim=256, padding='zero', |
|
actvn='lrelu', normalize_affine_output=False, modulated_conv=False): |
|
super(Styled_F_ConvBlock, self).__init__() |
|
if not modulated_conv: |
|
if padding == 'reflect': |
|
padding_layer = nn.ReflectionPad2d |
|
else: |
|
padding_layer = nn.ZeroPad2d |
|
|
|
if modulated_conv: |
|
conv2d = ModulatedConv2d |
|
else: |
|
conv2d = EqualConv2d |
|
|
|
if modulated_conv: |
|
self.actvn_gain = sqrt(2) |
|
else: |
|
self.actvn_gain = 1.0 |
|
|
|
|
|
self.modulated_conv = modulated_conv |
|
|
|
if actvn == 'relu': |
|
activation = nn.ReLU(True) |
|
else: |
|
activation = nn.LeakyReLU(0.2,True) |
|
|
|
|
|
if self.modulated_conv: |
|
self.conv0 = conv2d(fin, 128, kernel_size=3, padding_type=padding, upsample=False, |
|
latent_dim=latent_dim, normalize_mlp=normalize_affine_output) |
|
else: |
|
conv0 = conv2d(fin, 128, kernel_size=3) |
|
|
|
seq0 = [padding_layer(1), conv0] |
|
self.conv0 = nn.Sequential(*seq0) |
|
|
|
self.actvn0 = activation |
|
|
|
if self.modulated_conv: |
|
self.conv1 = conv2d(128, fout, kernel_size=3, padding_type=padding, downsample=False, |
|
latent_dim=latent_dim, normalize_mlp=normalize_affine_output) |
|
else: |
|
conv1 = conv2d(128, fout, kernel_size=3) |
|
seq1 = [padding_layer(1), conv1] |
|
self.conv1 = nn.Sequential(*seq1) |
|
|
|
|
|
|
|
def forward(self, input, latent=None): |
|
if self.modulated_conv: |
|
out = self.conv0(input,latent) |
|
else: |
|
out = self.conv0(input) |
|
|
|
out = self.actvn0(out) * self.actvn_gain |
|
|
|
if self.modulated_conv: |
|
out = self.conv1(out,latent) |
|
else: |
|
out = self.conv1(out) |
|
|
|
|
|
|
|
return out |
|
|
|
|
|
class ResBlock(nn.Module): |
|
def __init__(self, in_channels): |
|
super(ResBlock, self).__init__() |
|
self.block = nn.Sequential( |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False), |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, in_channels, kernel_size=3, padding=1, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) + x |
|
|
|
|
|
class DownSample(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(DownSample, self).__init__() |
|
self.block= nn.Sequential( |
|
nn.BatchNorm2d(in_channels), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1, bias=False) |
|
) |
|
|
|
def forward(self, x): |
|
return self.block(x) |
|
|
|
|
|
|
|
class FeatureEncoder(nn.Module): |
|
def __init__(self, in_channels, chns=[64,128,256,256,256]): |
|
|
|
super(FeatureEncoder, self).__init__() |
|
self.encoders = [] |
|
for i, out_chns in enumerate(chns): |
|
if i == 0: |
|
encoder = nn.Sequential(DownSample(in_channels, out_chns), |
|
ResBlock(out_chns), |
|
ResBlock(out_chns)) |
|
else: |
|
encoder = nn.Sequential(DownSample(chns[i-1], out_chns), |
|
ResBlock(out_chns), |
|
ResBlock(out_chns)) |
|
|
|
self.encoders.append(encoder) |
|
|
|
self.encoders = nn.ModuleList(self.encoders) |
|
|
|
|
|
def forward(self, x): |
|
encoder_features = [] |
|
for encoder in self.encoders: |
|
x = encoder(x) |
|
encoder_features.append(x) |
|
return encoder_features |
|
|
|
class RefinePyramid(nn.Module): |
|
def __init__(self, chns=[64,128,256,256,256], fpn_dim=256): |
|
super(RefinePyramid, self).__init__() |
|
self.chns = chns |
|
|
|
|
|
self.adaptive = [] |
|
for in_chns in list(reversed(chns)): |
|
adaptive_layer = nn.Conv2d(in_chns, fpn_dim, kernel_size=1) |
|
self.adaptive.append(adaptive_layer) |
|
self.adaptive = nn.ModuleList(self.adaptive) |
|
|
|
self.smooth = [] |
|
for i in range(len(chns)): |
|
smooth_layer = nn.Conv2d(fpn_dim, fpn_dim, kernel_size=3, padding=1) |
|
self.smooth.append(smooth_layer) |
|
self.smooth = nn.ModuleList(self.smooth) |
|
|
|
def forward(self, x): |
|
conv_ftr_list = x |
|
|
|
feature_list = [] |
|
last_feature = None |
|
for i, conv_ftr in enumerate(list(reversed(conv_ftr_list))): |
|
|
|
feature = self.adaptive[i](conv_ftr) |
|
|
|
if last_feature is not None: |
|
feature = feature + F.interpolate(last_feature, scale_factor=2, mode='nearest') |
|
|
|
feature = self.smooth[i](feature) |
|
last_feature = feature |
|
feature_list.append(feature) |
|
|
|
return tuple(reversed(feature_list)) |
|
|
|
|
|
class AFlowNet(nn.Module): |
|
def __init__(self, num_pyramid, fpn_dim=256): |
|
super(AFlowNet, self).__init__() |
|
|
|
padding_type='zero' |
|
actvn = 'lrelu' |
|
normalize_mlp = False |
|
modulated_conv = True |
|
|
|
|
|
self.netRefine = [] |
|
|
|
self.netStyle = [] |
|
|
|
self.netF = [] |
|
|
|
for i in range(num_pyramid): |
|
|
|
netRefine_layer = torch.nn.Sequential( |
|
torch.nn.Conv2d(2 * fpn_dim, out_channels=128, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=128, out_channels=64, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, stride=1, padding=1), |
|
torch.nn.LeakyReLU(inplace=False, negative_slope=0.1), |
|
torch.nn.Conv2d(in_channels=32, out_channels=2, kernel_size=3, stride=1, padding=1) |
|
) |
|
|
|
style_block = StyledConvBlock(256, 49, latent_dim=256, |
|
padding=padding_type, actvn=actvn, |
|
normalize_affine_output=normalize_mlp, |
|
modulated_conv=modulated_conv) |
|
|
|
style_F_block = Styled_F_ConvBlock(49, 2, latent_dim=256, |
|
padding=padding_type, actvn=actvn, |
|
normalize_affine_output=normalize_mlp, |
|
modulated_conv=modulated_conv) |
|
|
|
|
|
self.netRefine.append(netRefine_layer) |
|
self.netStyle.append(style_block) |
|
self.netF.append(style_F_block) |
|
|
|
|
|
self.netRefine = nn.ModuleList(self.netRefine) |
|
self.netStyle = nn.ModuleList(self.netStyle) |
|
self.netF = nn.ModuleList(self.netF) |
|
|
|
self.cond_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)) |
|
|
|
self.image_style = torch.nn.Sequential(torch.nn.Conv2d(256, 128, kernel_size=(8,6), stride=1, padding=0), torch.nn.LeakyReLU(inplace=False, negative_slope=0.1)) |
|
|
|
|
|
def forward(self, x, x_warps, x_conds, warp_feature=True): |
|
last_flow = None |
|
|
|
B = x_conds[len(x_warps)-1].shape[0] |
|
|
|
cond_style = self.cond_style(x_conds[len(x_warps) - 1]).view(B,-1) |
|
image_style = self.image_style(x_warps[len(x_warps) - 1]).view(B,-1) |
|
style = torch.cat([cond_style, image_style], 1) |
|
|
|
for i in range(len(x_warps)): |
|
x_warp = x_warps[len(x_warps) - 1 - i] |
|
x_cond = x_conds[len(x_warps) - 1 - i] |
|
|
|
if last_flow is not None and warp_feature: |
|
x_warp_after = F.grid_sample(x_warp, last_flow.detach().permute(0, 2, 3, 1), |
|
mode='bilinear', padding_mode='border') |
|
else: |
|
x_warp_after = x_warp |
|
|
|
|
|
stylemap = self.netStyle[i](x_warp_after, style) |
|
|
|
flow = self.netF[i](stylemap, style) |
|
flow = apply_offset(flow) |
|
if last_flow is not None: |
|
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') |
|
else: |
|
flow = flow.permute(0, 3, 1, 2) |
|
|
|
last_flow = flow |
|
x_warp = F.grid_sample(x_warp, flow.permute(0, 2, 3, 1),mode='bilinear', padding_mode='border') |
|
concat = torch.cat([x_warp,x_cond],1) |
|
flow = self.netRefine[i](concat) |
|
flow = apply_offset(flow) |
|
flow = F.grid_sample(last_flow, flow, mode='bilinear', padding_mode='border') |
|
|
|
last_flow = F.interpolate(flow, scale_factor=2, mode='bilinear') |
|
|
|
|
|
x_warp = F.grid_sample(x, last_flow.permute(0, 2, 3, 1), |
|
mode='bilinear', padding_mode='border') |
|
return x_warp, last_flow |
|
|
|
|
|
class AFWM(nn.Module): |
|
|
|
def __init__(self, opt, input_nc): |
|
super(AFWM, self).__init__() |
|
num_filters = [64,128,256,256,256] |
|
self.image_features = FeatureEncoder(3, num_filters) |
|
self.cond_features = FeatureEncoder(input_nc, num_filters) |
|
self.image_FPN = RefinePyramid(num_filters) |
|
self.cond_FPN = RefinePyramid(num_filters) |
|
self.aflow_net = AFlowNet(len(num_filters)) |
|
|
|
|
|
def forward(self, cond_input, image_input): |
|
|
|
|
|
cond_pyramids = self.cond_FPN(self.cond_features(cond_input)) |
|
image_pyramids = self.image_FPN(self.image_features(image_input)) |
|
|
|
x_warp, last_flow = self.aflow_net(image_input, image_pyramids, cond_pyramids) |
|
|
|
return x_warp, last_flow |
|
|
|
|
|
def update_learning_rate(self,optimizer): |
|
lrd = opt.lr / opt.niter_decay |
|
lr = self.old_lr - lrd |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
if opt.verbose: |
|
print('update learning rate: %f -> %f' % (self.old_lr, lr)) |
|
self.old_lr = lr |
|
|
|
def update_learning_rate_warp(self,optimizer): |
|
lrd = 0.2 * opt.lr / opt.niter_decay |
|
lr = self.old_lr_warp - lrd |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] = lr |
|
if opt.verbose: |
|
print('update learning rate: %f -> %f' % (self.old_lr_warp, lr)) |
|
self.old_lr_warp = lr |
|
|
|
|