|
import numpy as np |
|
import os |
|
import imageio |
|
import math |
|
import torch |
|
import importlib |
|
import re |
|
import argparse |
|
from natsort import natsorted |
|
|
|
|
|
|
|
|
|
def tensor2im(image_tensor, bytes=255.0, imtype=np.uint8): |
|
if image_tensor.dim() == 3: |
|
image_numpy = image_tensor.cpu().float().numpy() |
|
else: |
|
image_numpy = image_tensor[0].cpu().float().numpy() |
|
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * bytes |
|
|
|
return image_numpy.astype(imtype) |
|
|
|
|
|
|
|
def tensor2array(value_tensor): |
|
if value_tensor.dim() == 3: |
|
numpy = value_tensor.view(-1).cpu().float().numpy() |
|
else: |
|
numpy = value_tensor[0].view(-1).cpu().float().numpy() |
|
return numpy |
|
|
|
|
|
def uint82bin(n, count=8): |
|
"""returns the binary of integer n, count refers to amount of bits""" |
|
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)]) |
|
|
|
def labelcolormap(N): |
|
if N == 19: |
|
cmap = np.array([(0, 0, 0), (204, 0, 0), (76, 153, 0), |
|
(204, 204, 0), (51, 51, 255), (204, 0, 204), (0, 255, 255), |
|
(51, 255, 255), (102, 51, 0), (255, 0, 0), (102, 204, 0), |
|
(255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153), |
|
(0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)], |
|
dtype=np.uint8) |
|
else: |
|
cmap = np.zeros((N, 3), dtype=np.uint8) |
|
for i in range(N): |
|
r, g, b = 0, 0, 0 |
|
id = i |
|
for j in range(7): |
|
str_id = uint82bin(id) |
|
r = r ^ (np.uint8(str_id[-1]) << (7-j)) |
|
g = g ^ (np.uint8(str_id[-2]) << (7-j)) |
|
b = b ^ (np.uint8(str_id[-3]) << (7-j)) |
|
id = id >> 3 |
|
cmap[i, 0] = r |
|
cmap[i, 1] = g |
|
cmap[i, 2] = b |
|
return cmap |
|
|
|
class Colorize(object): |
|
def __init__(self, n): |
|
self.cmap = labelcolormap(n) |
|
self.cmap = torch.from_numpy(self.cmap[:n]) |
|
|
|
def __call__(self, gray_image): |
|
if len(gray_image.size()) != 3: |
|
gray_image = gray_image[0] |
|
|
|
size = gray_image.size() |
|
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0) |
|
|
|
for label in range(0, len(self.cmap)): |
|
mask = (label == gray_image[0]).cpu() |
|
color_image[0][mask] = self.cmap[label][0] |
|
color_image[1][mask] = self.cmap[label][1] |
|
color_image[2][mask] = self.cmap[label][2] |
|
color_image = color_image.float()/255.0 * 2 - 1 |
|
return color_image |
|
|
|
|
|
def make_colorwheel(): |
|
''' |
|
Generates a color wheel for optical flow visualization as presented in: |
|
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007) |
|
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
''' |
|
RY = 15 |
|
YG = 6 |
|
GC = 4 |
|
CB = 11 |
|
BM = 13 |
|
MR = 6 |
|
|
|
ncols = RY + YG + GC + CB + BM + MR |
|
colorwheel = np.zeros((ncols, 3)) |
|
col = 0 |
|
|
|
|
|
colorwheel[0:RY, 0] = 255 |
|
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY) |
|
col = col+RY |
|
|
|
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG) |
|
colorwheel[col:col+YG, 1] = 255 |
|
col = col+YG |
|
|
|
colorwheel[col:col+GC, 1] = 255 |
|
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC) |
|
col = col+GC |
|
|
|
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB) |
|
colorwheel[col:col+CB, 2] = 255 |
|
col = col+CB |
|
|
|
colorwheel[col:col+BM, 2] = 255 |
|
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM) |
|
col = col+BM |
|
|
|
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR) |
|
colorwheel[col:col+MR, 0] = 255 |
|
return colorwheel |
|
|
|
|
|
class flow2color(): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __init__(self): |
|
self.colorwheel = make_colorwheel() |
|
|
|
|
|
def flow_compute_color(self, u, v, convert_to_bgr=False): |
|
''' |
|
Applies the flow color wheel to (possibly clipped) flow components u and v. |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param u: np.ndarray, input horizontal flow |
|
:param v: np.ndarray, input vertical flow |
|
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB |
|
:return: |
|
''' |
|
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8) |
|
ncols = self.colorwheel.shape[0] |
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
a = np.arctan2(-v, -u)/np.pi |
|
fk = (a+1) / 2*(ncols-1) |
|
k0 = np.floor(fk).astype(np.int32) |
|
k1 = k0 + 1 |
|
k1[k1 == ncols] = 0 |
|
f = fk - k0 |
|
|
|
for i in range(self.colorwheel.shape[1]): |
|
|
|
tmp = self.colorwheel[:,i] |
|
col0 = tmp[k0] / 255.0 |
|
col1 = tmp[k1] / 255.0 |
|
col = (1-f)*col0 + f*col1 |
|
|
|
idx = (rad <= 1) |
|
col[idx] = 1 - rad[idx] * (1-col[idx]) |
|
col[~idx] = col[~idx] * 0.75 |
|
|
|
|
|
ch_idx = 2-i if convert_to_bgr else i |
|
flow_image[:,:,ch_idx] = np.floor(255 * col) |
|
|
|
return flow_image |
|
|
|
|
|
def __call__(self, flow_uv, clip_flow=None, convert_to_bgr=False): |
|
''' |
|
Expects a two dimensional flow image of shape [H,W,2] |
|
According to the C++ source code of Daniel Scharstein |
|
According to the Matlab source code of Deqing Sun |
|
:param flow_uv: np.ndarray of shape [H,W,2] |
|
:param clip_flow: float, maximum clipping value for flow |
|
:return: |
|
''' |
|
if len(flow_uv.size()) != 3: |
|
flow_uv = flow_uv[0] |
|
flow_uv = flow_uv.permute(1,2,0).cpu().detach().numpy() |
|
|
|
assert flow_uv.ndim == 3, 'input flow must have three dimensions' |
|
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]' |
|
|
|
if clip_flow is not None: |
|
flow_uv = np.clip(flow_uv, 0, clip_flow) |
|
|
|
u = flow_uv[:,:,1] |
|
v = flow_uv[:,:,0] |
|
|
|
|
|
rad = np.sqrt(np.square(u) + np.square(v)) |
|
rad_max = np.max(rad) |
|
|
|
epsilon = 1e-5 |
|
u = u / (rad_max + epsilon) |
|
v = v / (rad_max + epsilon) |
|
image = self.flow_compute_color(u, v, convert_to_bgr) |
|
image = torch.tensor(image).float().permute(2,0,1)/255.0 * 2 - 1 |
|
return image |
|
|
|
|
|
def save_image(image_numpy, image_path): |
|
if image_numpy.shape[2] == 1: |
|
image_numpy = image_numpy.reshape(image_numpy.shape[0], image_numpy.shape[1]) |
|
|
|
imageio.imwrite(image_path, image_numpy) |
|
|
|
|
|
def mkdirs(paths): |
|
if isinstance(paths, list) and not isinstance(paths, str): |
|
for path in paths: |
|
mkdir(path) |
|
else: |
|
mkdir(paths) |
|
|
|
|
|
def mkdir(path): |
|
if not os.path.exists(path): |
|
os.makedirs(path) |
|
|
|
|
|
def find_class_in_module(target_cls_name, module): |
|
target_cls_name = target_cls_name.replace('_', '').lower() |
|
clslib = importlib.import_module(module) |
|
cls = None |
|
for name, clsobj in clslib.__dict__.items(): |
|
if name.lower() == target_cls_name: |
|
cls = clsobj |
|
|
|
if cls is None: |
|
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name)) |
|
exit(0) |
|
|
|
return cls |
|
|
|
|
|
|
|
def atoi(text): |
|
return int(text) if text.isdigit() else text |
|
|
|
|
|
def natural_keys(text): |
|
''' |
|
alist.sort(key=natural_keys) sorts in human order |
|
http://nedbatchelder.com/blog/200712/human_sorting.html |
|
(See Toothy's implementation in the comments) |
|
''' |
|
return [atoi(c) for c in re.split('(\d+)', text)] |
|
|
|
|
|
def natural_sort(items): |
|
items.sort(key=natural_keys) |
|
|
|
class StoreDictKeyPair(argparse.Action): |
|
def __call__(self, parser, namespace, values, option_string=None): |
|
my_dict = {} |
|
for kv in values.split(","): |
|
|
|
k,v = kv.split("=") |
|
my_dict[k] = int(v) |
|
setattr(namespace, self.dest, my_dict) |
|
|
|
class StoreList(argparse.Action): |
|
def __call__(self, parser, namespace, values, option_string=None): |
|
my_list = [int(item) for item in values.split(',')] |
|
setattr(namespace, self.dest, my_list) |
|
|
|
def get_iteration(dir_name, file_name, net_name): |
|
if os.path.exists(os.path.join(dir_name, file_name)) is False: |
|
return None |
|
if 'latest' in file_name: |
|
gen_models = [os.path.join(dir_name, f) for f in os.listdir(dir_name) if |
|
os.path.isfile(os.path.join(dir_name, f)) and (not 'latest' in f) and ('_net_'+net_name+'.pth' in f)] |
|
if gen_models == []: |
|
return 0 |
|
model_name = os.path.basename(natsorted(gen_models)[-1]) |
|
else: |
|
model_name = file_name |
|
iterations = int(model_name.replace('_net_'+net_name+'.pth', '')) |
|
return iterations |
|
|