vtryon / util /flow_util.py
zestyoreo's picture
utils
3c97505
raw
history blame
9.87 kB
import numpy as np
import os
import imageio
import math
import torch
import importlib
import re
import argparse
from natsort import natsorted
# convert a tensor into a numpy array
def tensor2im(image_tensor, bytes=255.0, imtype=np.uint8):
if image_tensor.dim() == 3:
image_numpy = image_tensor.cpu().float().numpy()
else:
image_numpy = image_tensor[0].cpu().float().numpy()
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * bytes
return image_numpy.astype(imtype)
# conver a tensor into a numpy array
def tensor2array(value_tensor):
if value_tensor.dim() == 3:
numpy = value_tensor.view(-1).cpu().float().numpy()
else:
numpy = value_tensor[0].view(-1).cpu().float().numpy()
return numpy
# label color map
def uint82bin(n, count=8):
"""returns the binary of integer n, count refers to amount of bits"""
return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
def labelcolormap(N):
if N == 19: # CelebAMask-HQ
cmap = np.array([(0, 0, 0), (204, 0, 0), (76, 153, 0),
(204, 204, 0), (51, 51, 255), (204, 0, 204), (0, 255, 255),
(51, 255, 255), (102, 51, 0), (255, 0, 0), (102, 204, 0),
(255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153),
(0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)],
dtype=np.uint8)
else:
cmap = np.zeros((N, 3), dtype=np.uint8)
for i in range(N):
r, g, b = 0, 0, 0
id = i
for j in range(7):
str_id = uint82bin(id)
r = r ^ (np.uint8(str_id[-1]) << (7-j))
g = g ^ (np.uint8(str_id[-2]) << (7-j))
b = b ^ (np.uint8(str_id[-3]) << (7-j))
id = id >> 3
cmap[i, 0] = r
cmap[i, 1] = g
cmap[i, 2] = b
return cmap
class Colorize(object):
def __init__(self, n):
self.cmap = labelcolormap(n)
self.cmap = torch.from_numpy(self.cmap[:n])
def __call__(self, gray_image):
if len(gray_image.size()) != 3:
gray_image = gray_image[0]
size = gray_image.size()
color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)
for label in range(0, len(self.cmap)):
mask = (label == gray_image[0]).cpu()
color_image[0][mask] = self.cmap[label][0]
color_image[1][mask] = self.cmap[label][1]
color_image[2][mask] = self.cmap[label][2]
color_image = color_image.float()/255.0 * 2 - 1
return color_image
def make_colorwheel():
'''
Generates a color wheel for optical flow visualization as presented in:
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
'''
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros((ncols, 3))
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
col = col+RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
colorwheel[col:col+YG, 1] = 255
col = col+YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
col = col+GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
colorwheel[col:col+CB, 2] = 255
col = col+CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
col = col+BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
colorwheel[col:col+MR, 0] = 255
return colorwheel
class flow2color():
# code from: https://github.com/tomrunia/OpticalFlow_Visualization
# MIT License
#
# Copyright (c) 2018 Tom Runia
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Tom Runia
# Date Created: 2018-08-03
def __init__(self):
self.colorwheel = make_colorwheel()
def flow_compute_color(self, u, v, convert_to_bgr=False):
'''
Applies the flow color wheel to (possibly clipped) flow components u and v.
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param u: np.ndarray, input horizontal flow
:param v: np.ndarray, input vertical flow
:param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
:return:
'''
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
ncols = self.colorwheel.shape[0]
rad = np.sqrt(np.square(u) + np.square(v))
a = np.arctan2(-v, -u)/np.pi
fk = (a+1) / 2*(ncols-1)
k0 = np.floor(fk).astype(np.int32)
k1 = k0 + 1
k1[k1 == ncols] = 0
f = fk - k0
for i in range(self.colorwheel.shape[1]):
tmp = self.colorwheel[:,i]
col0 = tmp[k0] / 255.0
col1 = tmp[k1] / 255.0
col = (1-f)*col0 + f*col1
idx = (rad <= 1)
col[idx] = 1 - rad[idx] * (1-col[idx])
col[~idx] = col[~idx] * 0.75 # out of range?
# Note the 2-i => BGR instead of RGB
ch_idx = 2-i if convert_to_bgr else i
flow_image[:,:,ch_idx] = np.floor(255 * col)
return flow_image
def __call__(self, flow_uv, clip_flow=None, convert_to_bgr=False):
'''
Expects a two dimensional flow image of shape [H,W,2]
According to the C++ source code of Daniel Scharstein
According to the Matlab source code of Deqing Sun
:param flow_uv: np.ndarray of shape [H,W,2]
:param clip_flow: float, maximum clipping value for flow
:return:
'''
if len(flow_uv.size()) != 3:
flow_uv = flow_uv[0]
flow_uv = flow_uv.permute(1,2,0).cpu().detach().numpy()
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
if clip_flow is not None:
flow_uv = np.clip(flow_uv, 0, clip_flow)
u = flow_uv[:,:,1]
v = flow_uv[:,:,0]
rad = np.sqrt(np.square(u) + np.square(v))
rad_max = np.max(rad)
epsilon = 1e-5
u = u / (rad_max + epsilon)
v = v / (rad_max + epsilon)
image = self.flow_compute_color(u, v, convert_to_bgr)
image = torch.tensor(image).float().permute(2,0,1)/255.0 * 2 - 1
return image
def save_image(image_numpy, image_path):
if image_numpy.shape[2] == 1:
image_numpy = image_numpy.reshape(image_numpy.shape[0], image_numpy.shape[1])
imageio.imwrite(image_path, image_numpy)
def mkdirs(paths):
if isinstance(paths, list) and not isinstance(paths, str):
for path in paths:
mkdir(path)
else:
mkdir(paths)
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def find_class_in_module(target_cls_name, module):
target_cls_name = target_cls_name.replace('_', '').lower()
clslib = importlib.import_module(module)
cls = None
for name, clsobj in clslib.__dict__.items():
if name.lower() == target_cls_name:
cls = clsobj
if cls is None:
print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name))
exit(0)
return cls
def atoi(text):
return int(text) if text.isdigit() else text
def natural_keys(text):
'''
alist.sort(key=natural_keys) sorts in human order
http://nedbatchelder.com/blog/200712/human_sorting.html
(See Toothy's implementation in the comments)
'''
return [atoi(c) for c in re.split('(\d+)', text)]
def natural_sort(items):
items.sort(key=natural_keys)
class StoreDictKeyPair(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
my_dict = {}
for kv in values.split(","):
# print(kv)
k,v = kv.split("=")
my_dict[k] = int(v)
setattr(namespace, self.dest, my_dict)
class StoreList(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
my_list = [int(item) for item in values.split(',')]
setattr(namespace, self.dest, my_list)
#
def get_iteration(dir_name, file_name, net_name):
if os.path.exists(os.path.join(dir_name, file_name)) is False:
return None
if 'latest' in file_name:
gen_models = [os.path.join(dir_name, f) for f in os.listdir(dir_name) if
os.path.isfile(os.path.join(dir_name, f)) and (not 'latest' in f) and ('_net_'+net_name+'.pth' in f)]
if gen_models == []:
return 0
model_name = os.path.basename(natsorted(gen_models)[-1])
else:
model_name = file_name
iterations = int(model_name.replace('_net_'+net_name+'.pth', ''))
return iterations