File size: 9,867 Bytes
3c97505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import numpy as np
import os
import imageio
import math
import torch
import importlib
import re
import argparse
from natsort import natsorted



# convert a tensor into a numpy array
def tensor2im(image_tensor, bytes=255.0, imtype=np.uint8):
    if image_tensor.dim() == 3:
        image_numpy = image_tensor.cpu().float().numpy()
    else:
        image_numpy = image_tensor[0].cpu().float().numpy()
    image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * bytes

    return image_numpy.astype(imtype)


# conver a tensor into a numpy array
def tensor2array(value_tensor):
    if value_tensor.dim() == 3:
        numpy = value_tensor.view(-1).cpu().float().numpy()
    else:
        numpy = value_tensor[0].view(-1).cpu().float().numpy()
    return numpy

# label color map
def uint82bin(n, count=8):
    """returns the binary of integer n, count refers to amount of bits"""
    return ''.join([str((n >> y) & 1) for y in range(count-1, -1, -1)])
    
def labelcolormap(N):
    if N == 19: # CelebAMask-HQ
        cmap = np.array([(0,  0,  0), (204, 0,  0), (76, 153, 0),
                     (204, 204, 0), (51, 51, 255), (204, 0, 204), (0, 255, 255),
                     (51, 255, 255), (102, 51, 0), (255, 0, 0), (102, 204, 0),
                     (255, 255, 0), (0, 0, 153), (0, 0, 204), (255, 51, 153), 
                     (0, 204, 204), (0, 51, 0), (255, 153, 51), (0, 204, 0)], 
                     dtype=np.uint8) 
    else:
        cmap = np.zeros((N, 3), dtype=np.uint8)
        for i in range(N):
            r, g, b = 0, 0, 0
            id = i
            for j in range(7):
                str_id = uint82bin(id)
                r = r ^ (np.uint8(str_id[-1]) << (7-j))
                g = g ^ (np.uint8(str_id[-2]) << (7-j))
                b = b ^ (np.uint8(str_id[-3]) << (7-j))
                id = id >> 3
            cmap[i, 0] = r
            cmap[i, 1] = g
            cmap[i, 2] = b
    return cmap

class Colorize(object):
    def __init__(self, n):
        self.cmap = labelcolormap(n)
        self.cmap = torch.from_numpy(self.cmap[:n])

    def __call__(self, gray_image):
        if len(gray_image.size()) != 3:
            gray_image = gray_image[0]
            
        size = gray_image.size()
        color_image = torch.ByteTensor(3, size[1], size[2]).fill_(0)

        for label in range(0, len(self.cmap)):
            mask = (label == gray_image[0]).cpu()
            color_image[0][mask] = self.cmap[label][0]
            color_image[1][mask] = self.cmap[label][1]
            color_image[2][mask] = self.cmap[label][2]
        color_image = color_image.float()/255.0 * 2 - 1
        return color_image    


def make_colorwheel():
        '''
        Generates a color wheel for optical flow visualization as presented in:
            Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
            URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
        According to the C++ source code of Daniel Scharstein
        According to the Matlab source code of Deqing Sun
        '''
        RY = 15
        YG = 6
        GC = 4
        CB = 11
        BM = 13
        MR = 6

        ncols = RY + YG + GC + CB + BM + MR
        colorwheel = np.zeros((ncols, 3))
        col = 0

        # RY
        colorwheel[0:RY, 0] = 255
        colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
        col = col+RY
        # YG
        colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
        colorwheel[col:col+YG, 1] = 255
        col = col+YG
        # GC
        colorwheel[col:col+GC, 1] = 255
        colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
        col = col+GC
        # CB
        colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
        colorwheel[col:col+CB, 2] = 255
        col = col+CB
        # BM
        colorwheel[col:col+BM, 2] = 255
        colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
        col = col+BM
        # MR
        colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
        colorwheel[col:col+MR, 0] = 255
        return colorwheel


class flow2color():
# code from: https://github.com/tomrunia/OpticalFlow_Visualization
# MIT License
#
# Copyright (c) 2018 Tom Runia
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to conditions.
#
# Author: Tom Runia
# Date Created: 2018-08-03
    def __init__(self):
        self.colorwheel = make_colorwheel()


    def flow_compute_color(self, u, v, convert_to_bgr=False):
        '''
        Applies the flow color wheel to (possibly clipped) flow components u and v.
        According to the C++ source code of Daniel Scharstein
        According to the Matlab source code of Deqing Sun
        :param u: np.ndarray, input horizontal flow
        :param v: np.ndarray, input vertical flow
        :param convert_to_bgr: bool, whether to change ordering and output BGR instead of RGB
        :return:
        '''
        flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
        ncols = self.colorwheel.shape[0]

        rad = np.sqrt(np.square(u) + np.square(v))
        a = np.arctan2(-v, -u)/np.pi
        fk = (a+1) / 2*(ncols-1)
        k0 = np.floor(fk).astype(np.int32)
        k1 = k0 + 1
        k1[k1 == ncols] = 0
        f = fk - k0

        for i in range(self.colorwheel.shape[1]):

            tmp = self.colorwheel[:,i]
            col0 = tmp[k0] / 255.0
            col1 = tmp[k1] / 255.0
            col = (1-f)*col0 + f*col1

            idx = (rad <= 1)
            col[idx]  = 1 - rad[idx] * (1-col[idx])
            col[~idx] = col[~idx] * 0.75   # out of range?

            # Note the 2-i => BGR instead of RGB
            ch_idx = 2-i if convert_to_bgr else i
            flow_image[:,:,ch_idx] = np.floor(255 * col)

        return flow_image


    def __call__(self, flow_uv, clip_flow=None, convert_to_bgr=False):
        '''
        Expects a two dimensional flow image of shape [H,W,2]
        According to the C++ source code of Daniel Scharstein
        According to the Matlab source code of Deqing Sun
        :param flow_uv: np.ndarray of shape [H,W,2]
        :param clip_flow: float, maximum clipping value for flow
        :return:
        '''
        if len(flow_uv.size()) != 3:
            flow_uv = flow_uv[0]
        flow_uv = flow_uv.permute(1,2,0).cpu().detach().numpy()    

        assert flow_uv.ndim == 3, 'input flow must have three dimensions'
        assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'

        if clip_flow is not None:
            flow_uv = np.clip(flow_uv, 0, clip_flow)

        u = flow_uv[:,:,1]
        v = flow_uv[:,:,0]


        rad = np.sqrt(np.square(u) + np.square(v))
        rad_max = np.max(rad)

        epsilon = 1e-5
        u = u / (rad_max + epsilon)
        v = v / (rad_max + epsilon)
        image = self.flow_compute_color(u, v, convert_to_bgr) 
        image = torch.tensor(image).float().permute(2,0,1)/255.0 * 2 - 1
        return image


def save_image(image_numpy, image_path):
    if image_numpy.shape[2] == 1:
        image_numpy = image_numpy.reshape(image_numpy.shape[0], image_numpy.shape[1])

    imageio.imwrite(image_path, image_numpy)


def mkdirs(paths):
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)


def find_class_in_module(target_cls_name, module):
    target_cls_name = target_cls_name.replace('_', '').lower()
    clslib = importlib.import_module(module)
    cls = None
    for name, clsobj in clslib.__dict__.items():
        if name.lower() == target_cls_name:
            cls = clsobj

    if cls is None:
        print("In %s, there should be a class whose name matches %s in lowercase without underscore(_)" % (module, target_cls_name))
        exit(0)

    return cls        



def atoi(text):
    return int(text) if text.isdigit() else text


def natural_keys(text):
    '''
    alist.sort(key=natural_keys) sorts in human order
    http://nedbatchelder.com/blog/200712/human_sorting.html
    (See Toothy's implementation in the comments)
    '''
    return [atoi(c) for c in re.split('(\d+)', text)]


def natural_sort(items):
    items.sort(key=natural_keys)    

class StoreDictKeyPair(argparse.Action):
     def __call__(self, parser, namespace, values, option_string=None):
         my_dict = {}
         for kv in values.split(","):
             # print(kv)
             k,v = kv.split("=")
             my_dict[k] = int(v)
         setattr(namespace, self.dest, my_dict)   

class StoreList(argparse.Action):
     def __call__(self, parser, namespace, values, option_string=None):
        my_list = [int(item) for item in values.split(',')]
        setattr(namespace, self.dest, my_list)   
#           
def get_iteration(dir_name, file_name, net_name):
    if os.path.exists(os.path.join(dir_name, file_name)) is False:
        return None
    if 'latest' in file_name:
        gen_models = [os.path.join(dir_name, f) for f in os.listdir(dir_name) if
              os.path.isfile(os.path.join(dir_name, f)) and (not 'latest' in f) and ('_net_'+net_name+'.pth' in f)]
        if gen_models == []:
            return 0
        model_name = os.path.basename(natsorted(gen_models)[-1])
    else:
        model_name = file_name
    iterations = int(model_name.replace('_net_'+net_name+'.pth', ''))
    return iterations