|
from ultralytics import YOLO |
|
import cv2 |
|
import torch |
|
import gradio as gr |
|
from PIL import Image |
|
import numpy as np |
|
|
|
|
|
model = YOLO("best.pt") |
|
|
|
def predict(input_img): |
|
|
|
image = np.array(input_img) |
|
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
results = model(image) |
|
|
|
|
|
for result in results: |
|
for box in result.boxes: |
|
x1, y1, x2, y2 = map(int, box.xyxy[0]) |
|
conf = float(box.conf[0]) |
|
label = f"Damage: {conf:.2f}" |
|
|
|
|
|
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 3) |
|
cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2) |
|
|
|
|
|
output_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) |
|
return output_img |
|
|
|
|
|
gradio_app = gr.Interface( |
|
fn=predict, |
|
inputs=gr.Image(label="Upload a car image", sources=['upload', 'webcam'], type="pil"), |
|
outputs=gr.Image(label="Detected Damage"), |
|
title="Car Damage Detection", |
|
description="Upload an image of a car, and the model will detect and highlight damaged areas." |
|
) |
|
|
|
gradio_app.launch() |
|
|