Gopal2002 commited on
Commit
d9e162c
·
verified ·
1 Parent(s): 6daa573

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -44
app.py CHANGED
@@ -1,44 +1,43 @@
1
- from ultralytics import YOLO
2
- import cv2
3
- import torch
4
- import gradio as gr
5
- from PIL import Image
6
- import numpy as np
7
-
8
- # Load fine-tuned YOLOv8 model for car damage detection
9
- model = YOLO("best.pt") # Replace with your trained model file
10
-
11
- def predict(input_img):
12
- # Convert PIL image to OpenCV format
13
- image = np.array(input_img)
14
- image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
15
-
16
- # Run inference
17
- results = model(image)
18
-
19
- # Draw bounding boxes
20
- for result in results:
21
- for box in result.boxes:
22
- x1, y1, x2, y2 = map(int, box.xyxy[0])
23
- conf = float(box.conf[0])
24
- label = f"Damage: {conf:.2f}"
25
-
26
- # Draw red bounding box
27
- cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 3) # Red color (BGR: 0,0,255)
28
- cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
29
-
30
- # Convert back to PIL format
31
- output_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
32
- return output_img
33
-
34
- # Gradio interface
35
- gradio_app = gr.Interface(
36
- fn=predict,
37
- inputs=gr.Image(label="Upload a car image", sources=['upload', 'webcam'], type="pil"),
38
- outputs=gr.Image(label="Detected Damage"),
39
- title="Car Damage Detection",
40
- description="Upload an image of a car, and the model will detect and highlight damaged areas."
41
- )
42
-
43
- if __name__ == "__main__":
44
- gradio_app.launch()
 
1
+ from ultralytics import YOLO
2
+ import cv2
3
+ import torch
4
+ import gradio as gr
5
+ from PIL import Image
6
+ import numpy as np
7
+
8
+ # Load fine-tuned YOLOv8 model for car damage detection
9
+ model = YOLO("best.pt") # Replace with your trained model file
10
+
11
+ def predict(input_img):
12
+ # Convert PIL image to OpenCV format
13
+ image = np.array(input_img)
14
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
15
+
16
+ # Run inference
17
+ results = model(image)
18
+
19
+ # Draw bounding boxes
20
+ for result in results:
21
+ for box in result.boxes:
22
+ x1, y1, x2, y2 = map(int, box.xyxy[0])
23
+ conf = float(box.conf[0])
24
+ label = f"Damage: {conf:.2f}"
25
+
26
+ # Draw red bounding box
27
+ cv2.rectangle(image, (x1, y1), (x2, y2), (0, 0, 255), 3) # Red color (BGR: 0,0,255)
28
+ cv2.putText(image, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
29
+
30
+ # Convert back to PIL format
31
+ output_img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
32
+ return output_img
33
+
34
+ # Gradio interface
35
+ gradio_app = gr.Interface(
36
+ fn=predict,
37
+ inputs=gr.Image(label="Upload a car image", sources=['upload', 'webcam'], type="pil"),
38
+ outputs=gr.Image(label="Detected Damage"),
39
+ title="Car Damage Detection",
40
+ description="Upload an image of a car, and the model will detect and highlight damaged areas."
41
+ )
42
+
43
+ gradio_app.launch()