zeerd commited on
Commit
fb6f6d9
·
verified ·
1 Parent(s): 7c119cb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -16
app.py CHANGED
@@ -1,31 +1,55 @@
 
1
  from langchain.llms import HuggingFaceHub
2
  from langchain.embeddings import SentenceTransformerEmbeddings
3
  from langchain.vectorstores import FAISS
4
 
5
  # 1. 初始化 Gemma 模型
6
- llm = HuggingFaceHub(repo_id="google/gemma-7b-it", model_kwargs={"temperature": 0.5, "max_length": 512})
 
 
 
 
7
 
8
- # 2. 准备知识库数据
9
  knowledge_base = [
10
  "Gemma 是 Google 开发的大型语言模型。",
11
  "Gemma 具有强大的自然语言处理能力。",
12
- "Gemma 可以用于问答、对话、文本生成等任务。"
 
 
13
  ]
14
 
15
- # 3. 构建向量数据库
16
- embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
17
- db = FAISS.from_texts(knowledge_base, embeddings)
 
 
 
 
18
 
19
  # 4. 问答函数
20
  def answer_question(question):
21
- question_embedding = embeddings.embed_query(question)
22
- docs_and_scores = db.similarity_search_with_score(question_embedding)
23
- context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
24
- prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
25
- answer = llm(prompt)
26
- return answer
 
 
 
 
27
 
28
- # 5. 测试
29
- question = "Gemma 有哪些特点?"
30
- answer = answer_question(question)
31
- print(answer)
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
  from langchain.llms import HuggingFaceHub
3
  from langchain.embeddings import SentenceTransformerEmbeddings
4
  from langchain.vectorstores import FAISS
5
 
6
  # 1. 初始化 Gemma 模型
7
+ try:
8
+ llm = HuggingFaceHub(repo_id="google/gemma-7b-it", model_kwargs={"temperature": 0.5, "max_length": 512})
9
+ except Exception as e:
10
+ st.error(f"Gemma 模型加载失败:{e}")
11
+ st.stop()
12
 
13
+ # 2. 准备知识库数据 (示例)
14
  knowledge_base = [
15
  "Gemma 是 Google 开发的大型语言模型。",
16
  "Gemma 具有强大的自然语言处理能力。",
17
+ "Gemma 可以用于问答、对话、文本生成等任务。",
18
+ "Gemma 基于 Transformer 架构。",
19
+ "Gemma 支持多种语言。"
20
  ]
21
 
22
+ # 3. 构建向量数据库 (如果需要,仅构建一次)
23
+ try:
24
+ embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
25
+ db = FAISS.from_texts(knowledge_base, embeddings)
26
+ except Exception as e:
27
+ st.error(f"向量数据库构建失败:{e}")
28
+ st.stop()
29
 
30
  # 4. 问答函数
31
  def answer_question(question):
32
+ try:
33
+ question_embedding = embeddings.embed_query(question)
34
+ docs_and_scores = db.similarity_search_with_score(question_embedding)
35
+ context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
36
+ prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
37
+ answer = llm(prompt)
38
+ return answer
39
+ except Exception as e:
40
+ st.error(f"问答过程出错:{e}")
41
+ return "An error occurred during the answering process."
42
 
43
+ # 5. Streamlit 界面
44
+ st.title("Gemma 知识库问答系统")
45
+
46
+ question = st.text_area("请输入问题", height=100)
47
+
48
+ if st.button("提交"):
49
+ if not question:
50
+ st.warning("请输入问题!")
51
+ else:
52
+ with st.spinner("正在查询..."):
53
+ answer = answer_question(question)
54
+ st.write("答案:")
55
+ st.write(answer)