zeerd commited on
Commit
7c119cb
·
verified ·
1 Parent(s): 2282fbf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from langchain.llms import HuggingFaceHub
2
+ from langchain.embeddings import SentenceTransformerEmbeddings
3
+ from langchain.vectorstores import FAISS
4
+
5
+ # 1. 初始化 Gemma 模型
6
+ llm = HuggingFaceHub(repo_id="google/gemma-7b-it", model_kwargs={"temperature": 0.5, "max_length": 512})
7
+
8
+ # 2. 准备知识库数据
9
+ knowledge_base = [
10
+ "Gemma 是 Google 开发的大型语言模型。",
11
+ "Gemma 具有强大的自然语言处理能力。",
12
+ "Gemma 可以用于问答、对话、文本生成等任务。"
13
+ ]
14
+
15
+ # 3. 构建向量数据库
16
+ embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
17
+ db = FAISS.from_texts(knowledge_base, embeddings)
18
+
19
+ # 4. 问答函数
20
+ def answer_question(question):
21
+ question_embedding = embeddings.embed_query(question)
22
+ docs_and_scores = db.similarity_search_with_score(question_embedding)
23
+ context = "\n".join([doc.page_content for doc, _ in docs_and_scores])
24
+ prompt = f"请根据以下知识库回答问题:\n{context}\n问题:{question}"
25
+ answer = llm(prompt)
26
+ return answer
27
+
28
+ # 5. 测试
29
+ question = "Gemma 有哪些特点?"
30
+ answer = answer_question(question)
31
+ print(answer)