Spaces:
Sleeping
Sleeping
import gradio as gr | |
from PIL import Image | |
import torch | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
processor = BlipProcessor.from_pretrained("zeddotes/blip-computer-thoughts") | |
model = BlipForConditionalGeneration.from_pretrained("zeddotes/blip-computer-thoughts") | |
def caption_image(image): | |
# image is a PIL Image from Gradio | |
# Convert to model inputs | |
inputs = processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
# Generate text from the model | |
generated_ids = model.generate(**inputs, max_length=50) | |
caption = processor.decode(generated_ids[0], skip_special_tokens=True) | |
return caption | |
demo = gr.Interface( | |
fn=caption_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="My Fine-Tuned BLIP Model" | |
) | |
if __name__ == "__main__": | |
demo.launch() |