Spaces:
Sleeping
Sleeping
File size: 848 Bytes
7ea3a20 75aecc2 7ea3a20 3454c90 7ea3a20 896413c 7ea3a20 896413c 75aecc2 7ea3a20 896413c 7ea3a20 896413c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
import gradio as gr
from PIL import Image
import torch
from transformers import BlipProcessor, BlipForConditionalGeneration
processor = BlipProcessor.from_pretrained("zeddotes/blip-computer-thoughts")
model = BlipForConditionalGeneration.from_pretrained("zeddotes/blip-computer-thoughts")
def caption_image(image):
# image is a PIL Image from Gradio
# Convert to model inputs
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
# Generate text from the model
generated_ids = model.generate(**inputs, max_length=50)
caption = processor.decode(generated_ids[0], skip_special_tokens=True)
return caption
demo = gr.Interface(
fn=caption_image,
inputs=gr.Image(type="pil"),
outputs="text",
title="My Fine-Tuned BLIP Model"
)
if __name__ == "__main__":
demo.launch() |