File size: 2,451 Bytes
98d74fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from PIL import Image
from torchvision import transforms
import torch
import os
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from io import BytesIO

# from dotenv import load_dotenv
from .model import MalwareNet, malware_classes  # assuming malware_classes contains class names

# load_dotenv()

app = FastAPI()

# Preprocessing function for the model
def preprocess_image(image_path):
    image = Image.open(image_path).convert("RGB")
    preprocess = transforms.Compose([
        transforms.Resize((224, 224)),  # Resize to the input size expected by the model
        transforms.ToTensor(),          # Convert to tensor
        transforms.Normalize(           # Normalize using model's requirements (e.g. ImageNet)
            mean=[0.485, 0.456, 0.406], 
            std=[0.229, 0.224, 0.225]
        )
    ])
    return preprocess(image).unsqueeze(0)  # Add batch dimension

# Load model and its weights
def load_model():
    model = MalwareNet()
    base_dir = os.path.dirname(os.path.abspath(__file__))
    model_location = os.path.join(base_dir, '../model/malwareNet.pt')  # Relative path to the model file
    state_dict = torch.load(model_location, map_location=torch.device('cpu'), weights_only=True)
    model.load_state_dict(state_dict)
    model.eval()  # Set the model to evaluation mode
    return model

@app.get("/")
def status():
    return {"status": "ok"}

@app.post("/predict")
async def predict(data: dict):
    image_path = data.get("image_url")
    if not os.path.exists(image_path):
        raise HTTPException(status_code=400, detail="Image path does not exist.")

    try:
        # Load and preprocess the image
        img_tensor = preprocess_image(image_path)

        # Load the model and make the prediction
        model = load_model()
        with torch.no_grad():  # No gradient calculation is needed
            prediction = model(img_tensor)

        # Get the predicted class
        predicted_class = malware_classes[torch.argmax(prediction).item()]

        return JSONResponse(content={"image": image_path, "prediction": predicted_class})

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error processing the image: {e}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(
        "src.serve:app",
        host=os.environ.get("HOST", "localhost"),
        port=int(os.environ.get("PORT", 5000)),
        reload=True,
    )