Spaces:
Sleeping
Sleeping
source code added
Browse files`src` folder contains model.py and serve.py files
- src/__init__.py +1 -0
- src/model.py +87 -0
- src/serve.py +73 -0
src/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
src/model.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
malware_classes = ['7ev3n', 'APosT', 'Adposhel', 'Agent', 'Agentb', 'Allaple', 'Alueron.gen!J', 'Amonetize',
|
7 |
+
'Androm', 'Bashlite', 'Bingoml', 'Blacksoul', 'BrowseFox', 'C2LOP.gen!g', 'Convagent', 'Copak',
|
8 |
+
'Delf', 'Dialplatform.B', 'Dinwod', 'Elex', 'Emotet', 'Escelar', 'Expiro', 'Fakerean', 'Fareit',
|
9 |
+
'Fasong', 'GandCrab', 'GlobelImposter', 'GootLoader', 'HLLP', 'HackKMS', 'Hlux', 'IcedId', 'Infy',
|
10 |
+
'Inject', 'Injector', 'InstallCore', 'KRBanker', 'Koadic', 'Kryptik', 'Kwampirs', 'Lamer',
|
11 |
+
'LemonDuck', 'Loki', 'Lolyda.AA1', 'Lolyda.AA2', 'Mimail', 'MultiPlug', 'Mydoom', 'Neoreklami',
|
12 |
+
'Neshta', 'NetWireRAT', 'Ngrbot', 'OnlinerSpambot', 'Orcus', 'Padodor', 'Plite', 'PolyRansom',
|
13 |
+
'QakBot', 'QtBot', 'Qukart', 'REvil', 'Ramdo', 'Regrun', 'Rekt Loader', 'Sakula', 'Salgorea',
|
14 |
+
'Scar', 'SelfDel', 'Small', 'Snarasite', 'Stantinko', 'Trickpak', 'Upantix', 'Upatre', 'VB',
|
15 |
+
'VBA', 'VBKrypt', 'VBNA', 'Vilsel', 'Vobfus', 'WBNA', 'Wecod', 'XTunnel', 'Zenpak', 'Zeus', 'benign']
|
16 |
+
|
17 |
+
class DenseLayer(nn.Module):
|
18 |
+
def __init__(self, in_channels, growth_rate, bn_size):
|
19 |
+
super(DenseLayer, self).__init__()
|
20 |
+
self.bn1 = nn.BatchNorm2d(in_channels)
|
21 |
+
self.conv1 = nn.Conv2d(in_channels, bn_size * growth_rate, kernel_size=1, bias=False)
|
22 |
+
self.bn2 = nn.BatchNorm2d(bn_size * growth_rate)
|
23 |
+
self.conv2 = nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False)
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
out = self.conv1(F.relu(self.bn1(x)))
|
27 |
+
out = self.conv2(F.relu(self.bn2(out)))
|
28 |
+
return torch.cat([x, out], 1)
|
29 |
+
|
30 |
+
class DenseBlock(nn.Module):
|
31 |
+
def __init__(self, num_layers, in_channels, growth_rate, bn_size):
|
32 |
+
super(DenseBlock, self).__init__()
|
33 |
+
layers = []
|
34 |
+
for i in range(num_layers):
|
35 |
+
layers.append(DenseLayer(in_channels + i * growth_rate, growth_rate, bn_size))
|
36 |
+
self.layers = nn.Sequential(*layers)
|
37 |
+
|
38 |
+
def forward(self, x):
|
39 |
+
return self.layers(x)
|
40 |
+
|
41 |
+
class TransitionLayer(nn.Module):
|
42 |
+
def __init__(self, in_channels, out_channels):
|
43 |
+
super(TransitionLayer, self).__init__()
|
44 |
+
self.bn = nn.BatchNorm2d(in_channels)
|
45 |
+
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
46 |
+
self.pool = nn.AvgPool2d(kernel_size=2, stride=2)
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
out = self.conv(F.relu(self.bn(x)))
|
50 |
+
return self.pool(out)
|
51 |
+
|
52 |
+
class MalwareNet(nn.Module):
|
53 |
+
def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, compression_rate=0.5, num_classes=87):
|
54 |
+
super(MalwareNet, self).__init__()
|
55 |
+
|
56 |
+
# First convolution
|
57 |
+
self.features = nn.Sequential(
|
58 |
+
nn.Conv2d(3, num_init_features, kernel_size=7, stride=2, padding=3, bias=False),
|
59 |
+
nn.BatchNorm2d(num_init_features),
|
60 |
+
nn.ReLU(inplace=True),
|
61 |
+
nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
62 |
+
)
|
63 |
+
|
64 |
+
# Dense blocks
|
65 |
+
num_features = num_init_features
|
66 |
+
for i, num_layers in enumerate(block_config):
|
67 |
+
block = DenseBlock(num_layers, num_features, growth_rate, bn_size)
|
68 |
+
self.features.add_module(f'denseblock{i+1}', block)
|
69 |
+
num_features += num_layers * growth_rate
|
70 |
+
if i != len(block_config) - 1:
|
71 |
+
transition = TransitionLayer(num_features, int(num_features * compression_rate))
|
72 |
+
self.features.add_module(f'transition{i+1}', transition)
|
73 |
+
num_features = int(num_features * compression_rate)
|
74 |
+
|
75 |
+
# Final batch norm
|
76 |
+
self.features.add_module('norm5', nn.BatchNorm2d(num_features))
|
77 |
+
|
78 |
+
# Linear layer
|
79 |
+
self.classifier = nn.Linear(num_features, num_classes)
|
80 |
+
|
81 |
+
def forward(self, x):
|
82 |
+
features = self.features(x)
|
83 |
+
out = F.relu(features)
|
84 |
+
out = F.adaptive_avg_pool2d(out, (1, 1))
|
85 |
+
out = torch.flatten(out, 1)
|
86 |
+
out = self.classifier(out)
|
87 |
+
return out
|
src/serve.py
ADDED
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from torchvision import transforms
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from fastapi.responses import JSONResponse
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# from dotenv import load_dotenv
|
10 |
+
from .model import MalwareNet, malware_classes # assuming malware_classes contains class names
|
11 |
+
|
12 |
+
# load_dotenv()
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# Preprocessing function for the model
|
17 |
+
def preprocess_image(image_path):
|
18 |
+
image = Image.open(image_path).convert("RGB")
|
19 |
+
preprocess = transforms.Compose([
|
20 |
+
transforms.Resize((224, 224)), # Resize to the input size expected by the model
|
21 |
+
transforms.ToTensor(), # Convert to tensor
|
22 |
+
transforms.Normalize( # Normalize using model's requirements (e.g. ImageNet)
|
23 |
+
mean=[0.485, 0.456, 0.406],
|
24 |
+
std=[0.229, 0.224, 0.225]
|
25 |
+
)
|
26 |
+
])
|
27 |
+
return preprocess(image).unsqueeze(0) # Add batch dimension
|
28 |
+
|
29 |
+
# Load model and its weights
|
30 |
+
def load_model():
|
31 |
+
model = MalwareNet()
|
32 |
+
base_dir = os.path.dirname(os.path.abspath(__file__))
|
33 |
+
model_location = os.path.join(base_dir, '../model/malwareNet.pt') # Relative path to the model file
|
34 |
+
state_dict = torch.load(model_location, map_location=torch.device('cpu'), weights_only=True)
|
35 |
+
model.load_state_dict(state_dict)
|
36 |
+
model.eval() # Set the model to evaluation mode
|
37 |
+
return model
|
38 |
+
|
39 |
+
@app.get("/")
|
40 |
+
def status():
|
41 |
+
return {"status": "ok"}
|
42 |
+
|
43 |
+
@app.post("/predict")
|
44 |
+
async def predict(data: dict):
|
45 |
+
image_path = data.get("image_url")
|
46 |
+
if not os.path.exists(image_path):
|
47 |
+
raise HTTPException(status_code=400, detail="Image path does not exist.")
|
48 |
+
|
49 |
+
try:
|
50 |
+
# Load and preprocess the image
|
51 |
+
img_tensor = preprocess_image(image_path)
|
52 |
+
|
53 |
+
# Load the model and make the prediction
|
54 |
+
model = load_model()
|
55 |
+
with torch.no_grad(): # No gradient calculation is needed
|
56 |
+
prediction = model(img_tensor)
|
57 |
+
|
58 |
+
# Get the predicted class
|
59 |
+
predicted_class = malware_classes[torch.argmax(prediction).item()]
|
60 |
+
|
61 |
+
return JSONResponse(content={"image": image_path, "prediction": predicted_class})
|
62 |
+
|
63 |
+
except Exception as e:
|
64 |
+
raise HTTPException(status_code=500, detail=f"Error processing the image: {e}")
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
import uvicorn
|
68 |
+
uvicorn.run(
|
69 |
+
"src.serve:app",
|
70 |
+
host=os.environ.get("HOST", "localhost"),
|
71 |
+
port=int(os.environ.get("PORT", 5000)),
|
72 |
+
reload=True,
|
73 |
+
)
|