|
from flask import Flask, jsonify, request, send_file |
|
import threading |
|
import time |
|
import os |
|
import tempfile |
|
import shutil |
|
import uuid |
|
import zipfile |
|
import io |
|
from datetime import datetime, timedelta |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
training_jobs = {} |
|
|
|
class TrainingProgress: |
|
def __init__(self, job_id): |
|
self.job_id = job_id |
|
self.status = "initializing" |
|
self.progress = 0 |
|
self.current_step = 0 |
|
self.total_steps = 0 |
|
self.start_time = time.time() |
|
self.estimated_finish_time = None |
|
self.message = "Starting training..." |
|
self.error = None |
|
self.model_path = None |
|
self.detected_columns = None |
|
|
|
def update_progress(self, current_step, total_steps, message=""): |
|
self.current_step = current_step |
|
self.total_steps = total_steps |
|
self.progress = (current_step / total_steps) * 100 if total_steps > 0 else 0 |
|
self.message = message |
|
|
|
|
|
if current_step > 0: |
|
elapsed_time = time.time() - self.start_time |
|
time_per_step = elapsed_time / current_step |
|
remaining_steps = total_steps - current_step |
|
estimated_remaining_time = remaining_steps * time_per_step |
|
self.estimated_finish_time = datetime.now() + timedelta(seconds=estimated_remaining_time) |
|
|
|
def to_dict(self): |
|
return { |
|
"job_id": self.job_id, |
|
"status": self.status, |
|
"progress": round(self.progress, 2), |
|
"current_step": self.current_step, |
|
"total_steps": self.total_steps, |
|
"message": self.message, |
|
"estimated_finish_time": self.estimated_finish_time.isoformat() if self.estimated_finish_time else None, |
|
"error": self.error, |
|
"model_path": self.model_path, |
|
"detected_columns": self.detected_columns |
|
} |
|
|
|
def detect_qa_columns(dataset): |
|
"""Automatically detect question and answer columns in the dataset""" |
|
|
|
question_patterns = [ |
|
'question', 'prompt', 'input', 'query', 'patient', 'user', 'human', |
|
'instruction', 'context', 'q', 'text', 'source' |
|
] |
|
|
|
|
|
answer_patterns = [ |
|
'answer', 'response', 'output', 'reply', 'doctor', 'assistant', 'ai', |
|
'completion', 'target', 'a', 'label', 'ground_truth' |
|
] |
|
|
|
|
|
columns = list(dataset.column_names) |
|
|
|
|
|
question_col = None |
|
for pattern in question_patterns: |
|
for col in columns: |
|
if pattern.lower() in col.lower(): |
|
question_col = col |
|
break |
|
if question_col: |
|
break |
|
|
|
|
|
answer_col = None |
|
for pattern in answer_patterns: |
|
for col in columns: |
|
if pattern.lower() in col.lower() and col != question_col: |
|
answer_col = col |
|
break |
|
if answer_col: |
|
break |
|
|
|
|
|
if not question_col or not answer_col: |
|
text_columns = [] |
|
for col in columns: |
|
|
|
sample = dataset[0][col] |
|
if isinstance(sample, str) and len(sample.strip()) > 0: |
|
text_columns.append(col) |
|
|
|
if len(text_columns) >= 2: |
|
question_col = text_columns[0] |
|
answer_col = text_columns[1] |
|
elif len(text_columns) == 1: |
|
|
|
question_col = answer_col = text_columns[0] |
|
|
|
return question_col, answer_col |
|
|
|
def train_model_background(job_id, dataset_name, base_model_name=None): |
|
"""Background training function with progress tracking""" |
|
progress = training_jobs[job_id] |
|
|
|
try: |
|
|
|
temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_") |
|
|
|
|
|
os.environ['HF_HOME'] = temp_dir |
|
os.environ['TRANSFORMERS_CACHE'] = temp_dir |
|
os.environ['HF_DATASETS_CACHE'] = temp_dir |
|
os.environ['TORCH_HOME'] = temp_dir |
|
|
|
progress.status = "loading_libraries" |
|
progress.message = "Loading required libraries..." |
|
|
|
|
|
import torch |
|
from datasets import load_dataset, Dataset |
|
from huggingface_hub import login |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
TrainingArguments, |
|
Trainer, |
|
TrainerCallback, |
|
) |
|
from peft import ( |
|
LoraConfig, |
|
get_peft_model, |
|
) |
|
|
|
|
|
hf_token = os.getenv('HF_TOKEN') |
|
if hf_token: |
|
login(token=hf_token) |
|
|
|
progress.status = "loading_model" |
|
progress.message = "Loading base model and tokenizer..." |
|
|
|
|
|
base_model = base_model_name or "microsoft/DialoGPT-small" |
|
new_model = f"trained-model-{job_id}" |
|
max_length = 256 |
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
base_model, |
|
cache_dir=temp_dir, |
|
torch_dtype=torch.float32, |
|
device_map="auto" if torch.cuda.is_available() else "cpu", |
|
trust_remote_code=True |
|
) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained( |
|
base_model, |
|
cache_dir=temp_dir, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
model.resize_token_embeddings(len(tokenizer)) |
|
|
|
progress.status = "preparing_model" |
|
progress.message = "Setting up LoRA configuration..." |
|
|
|
|
|
peft_config = LoraConfig( |
|
r=8, |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
) |
|
model = get_peft_model(model, peft_config) |
|
|
|
progress.status = "loading_dataset" |
|
progress.message = "Loading and preparing dataset..." |
|
|
|
|
|
dataset = load_dataset( |
|
dataset_name, |
|
split="train" if "train" in load_dataset(dataset_name, cache_dir=temp_dir).keys() else "all", |
|
cache_dir=temp_dir, |
|
trust_remote_code=True |
|
) |
|
|
|
|
|
question_col, answer_col = detect_qa_columns(dataset) |
|
|
|
if not question_col or not answer_col: |
|
raise ValueError("Could not automatically detect question and answer columns in the dataset") |
|
|
|
progress.detected_columns = {"question": question_col, "answer": answer_col} |
|
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}" |
|
|
|
|
|
dataset = dataset.shuffle(seed=65).select(range(min(1000, len(dataset)))) |
|
|
|
|
|
class CustomDataset(torch.utils.data.Dataset): |
|
def __init__(self, texts, tokenizer, max_length): |
|
self.texts = texts |
|
self.tokenizer = tokenizer |
|
self.max_length = max_length |
|
|
|
def __len__(self): |
|
return len(self.texts) |
|
|
|
def __getitem__(self, idx): |
|
text = self.texts[idx] |
|
|
|
|
|
encoding = self.tokenizer( |
|
text, |
|
truncation=True, |
|
padding='max_length', |
|
max_length=self.max_length, |
|
return_tensors='pt' |
|
) |
|
|
|
|
|
input_ids = encoding['input_ids'].squeeze() |
|
attention_mask = encoding['attention_mask'].squeeze() |
|
|
|
|
|
labels = input_ids.clone() |
|
|
|
|
|
labels[attention_mask == 0] = -100 |
|
|
|
return { |
|
'input_ids': input_ids, |
|
'attention_mask': attention_mask, |
|
'labels': labels |
|
} |
|
|
|
|
|
texts = [] |
|
for item in dataset: |
|
question = str(item[question_col]).strip() |
|
answer = str(item[answer_col]).strip() |
|
text = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}" |
|
texts.append(text) |
|
|
|
|
|
train_dataset = CustomDataset(texts, tokenizer, max_length) |
|
|
|
|
|
batch_size = 2 |
|
gradient_accumulation_steps = 1 |
|
num_epochs = 1 |
|
|
|
steps_per_epoch = len(train_dataset) // (batch_size * gradient_accumulation_steps) |
|
total_steps = steps_per_epoch * num_epochs |
|
|
|
progress.total_steps = total_steps |
|
progress.status = "training" |
|
progress.message = "Starting training..." |
|
|
|
|
|
output_dir = os.path.join(temp_dir, new_model) |
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
training_args = TrainingArguments( |
|
output_dir=output_dir, |
|
per_device_train_batch_size=batch_size, |
|
gradient_accumulation_steps=gradient_accumulation_steps, |
|
num_train_epochs=num_epochs, |
|
logging_steps=1, |
|
save_steps=max(1, total_steps // 2), |
|
save_total_limit=1, |
|
learning_rate=5e-5, |
|
warmup_steps=2, |
|
logging_strategy="steps", |
|
save_strategy="steps", |
|
fp16=False, |
|
bf16=False, |
|
dataloader_num_workers=0, |
|
remove_unused_columns=False, |
|
report_to=None, |
|
prediction_loss_only=True, |
|
) |
|
|
|
|
|
class ProgressCallback(TrainerCallback): |
|
def __init__(self, progress_tracker): |
|
self.progress_tracker = progress_tracker |
|
self.last_update = time.time() |
|
|
|
def on_log(self, args, state, control, model=None, logs=None, **kwargs): |
|
current_time = time.time() |
|
|
|
if current_time - self.last_update >= 3: |
|
self.progress_tracker.update_progress( |
|
state.global_step, |
|
state.max_steps, |
|
f"Training step {state.global_step}/{state.max_steps}" |
|
) |
|
self.last_update = current_time |
|
|
|
|
|
if logs: |
|
loss = logs.get('train_loss', logs.get('loss', 'N/A')) |
|
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}" |
|
|
|
def on_train_begin(self, args, state, control, **kwargs): |
|
self.progress_tracker.status = "training" |
|
self.progress_tracker.message = "Training started..." |
|
|
|
def on_train_end(self, args, state, control, **kwargs): |
|
self.progress_tracker.status = "saving" |
|
self.progress_tracker.message = "Training complete, saving model..." |
|
|
|
|
|
trainer = Trainer( |
|
model=model, |
|
args=training_args, |
|
train_dataset=train_dataset, |
|
callbacks=[ProgressCallback(progress)], |
|
tokenizer=tokenizer, |
|
) |
|
|
|
|
|
trainer.train() |
|
trainer.save_model(output_dir) |
|
tokenizer.save_pretrained(output_dir) |
|
|
|
|
|
progress.model_path = output_dir |
|
progress.status = "completed" |
|
progress.progress = 100 |
|
progress.message = f"Training completed! Model ready for download." |
|
|
|
|
|
def cleanup_temp_dir(): |
|
time.sleep(3600) |
|
try: |
|
shutil.rmtree(temp_dir) |
|
|
|
if job_id in training_jobs: |
|
del training_jobs[job_id] |
|
except: |
|
pass |
|
|
|
cleanup_thread = threading.Thread(target=cleanup_temp_dir) |
|
cleanup_thread.daemon = True |
|
cleanup_thread.start() |
|
|
|
except Exception as e: |
|
progress.status = "error" |
|
progress.error = str(e) |
|
progress.message = f"Training failed: {str(e)}" |
|
|
|
|
|
try: |
|
if 'temp_dir' in locals(): |
|
shutil.rmtree(temp_dir) |
|
except: |
|
pass |
|
|
|
def create_model_zip(model_path, job_id): |
|
"""Create a zip file containing the trained model""" |
|
memory_file = io.BytesIO() |
|
|
|
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf: |
|
for root, dirs, files in os.walk(model_path): |
|
for file in files: |
|
file_path = os.path.join(root, file) |
|
arc_name = os.path.relpath(file_path, model_path) |
|
zf.write(file_path, arc_name) |
|
|
|
memory_file.seek(0) |
|
return memory_file |
|
|
|
@app.route('/api/train', methods=['POST']) |
|
def start_training(): |
|
"""Start training and return job ID for tracking""" |
|
try: |
|
data = request.get_json() if request.is_json else {} |
|
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot') |
|
base_model_name = data.get('base_model', 'microsoft/DialoGPT-small') |
|
|
|
job_id = str(uuid.uuid4())[:8] |
|
progress = TrainingProgress(job_id) |
|
training_jobs[job_id] = progress |
|
|
|
|
|
training_thread = threading.Thread( |
|
target=train_model_background, |
|
args=(job_id, dataset_name, base_model_name) |
|
) |
|
training_thread.daemon = True |
|
training_thread.start() |
|
|
|
return jsonify({ |
|
"status": "started", |
|
"job_id": job_id, |
|
"dataset_name": dataset_name, |
|
"base_model": base_model_name, |
|
"message": "Training started. Use /api/status/<job_id> to track progress." |
|
}) |
|
|
|
except Exception as e: |
|
return jsonify({"status": "error", "message": str(e)}), 500 |
|
|
|
@app.route('/api/status/<job_id>', methods=['GET']) |
|
def get_training_status(job_id): |
|
"""Get training progress and estimated completion time""" |
|
if job_id not in training_jobs: |
|
return jsonify({"status": "error", "message": "Job not found"}), 404 |
|
|
|
progress = training_jobs[job_id] |
|
return jsonify(progress.to_dict()) |
|
|
|
@app.route('/api/download/<job_id>', methods=['GET']) |
|
def download_model(job_id): |
|
"""Download the trained model as a zip file""" |
|
if job_id not in training_jobs: |
|
return jsonify({"status": "error", "message": "Job not found"}), 404 |
|
|
|
progress = training_jobs[job_id] |
|
|
|
if progress.status != "completed": |
|
return jsonify({ |
|
"status": "error", |
|
"message": f"Model not ready for download. Current status: {progress.status}" |
|
}), 400 |
|
|
|
if not progress.model_path or not os.path.exists(progress.model_path): |
|
return jsonify({ |
|
"status": "error", |
|
"message": "Model files not found. They may have been cleaned up." |
|
}), 404 |
|
|
|
try: |
|
|
|
zip_file = create_model_zip(progress.model_path, job_id) |
|
|
|
return send_file( |
|
zip_file, |
|
as_attachment=True, |
|
download_name=f"trained_model_{job_id}.zip", |
|
mimetype='application/zip' |
|
) |
|
|
|
except Exception as e: |
|
return jsonify({"status": "error", "message": f"Download failed: {str(e)}"}), 500 |
|
|
|
@app.route('/api/jobs', methods=['GET']) |
|
def list_jobs(): |
|
"""List all training jobs""" |
|
jobs = {job_id: progress.to_dict() for job_id, progress in training_jobs.items()} |
|
return jsonify({"jobs": jobs}) |
|
|
|
@app.route('/') |
|
def home(): |
|
return jsonify({ |
|
"message": "Welcome to Enhanced LLaMA Fine-tuning API!", |
|
"features": [ |
|
"Automatic question/answer column detection", |
|
"Configurable base model and dataset", |
|
"Local model download", |
|
"Progress tracking with ETA" |
|
], |
|
"endpoints": { |
|
"POST /api/train": "Start training (accepts dataset_name and base_model in JSON)", |
|
"GET /api/status/<job_id>": "Get training status and detected columns", |
|
"GET /api/download/<job_id>": "Download trained model as zip", |
|
"GET /api/jobs": "List all jobs" |
|
}, |
|
"usage_example": { |
|
"start_training": { |
|
"method": "POST", |
|
"url": "/api/train", |
|
"body": { |
|
"dataset_name": "your-dataset-name", |
|
"base_model": "microsoft/DialoGPT-small" |
|
} |
|
} |
|
} |
|
}) |
|
|
|
@app.route('/health') |
|
def health(): |
|
return jsonify({"status": "healthy"}) |
|
|
|
if __name__ == '__main__': |
|
port = int(os.environ.get('PORT', 7860)) |
|
app.run(host='0.0.0.0', port=port, debug=False) |