Guetat Youssef
commited on
Commit
·
c2215d0
1
Parent(s):
8f8763e
test
Browse files
app.py
CHANGED
@@ -112,7 +112,7 @@ def detect_qa_columns(dataset):
|
|
112 |
return question_col, answer_col
|
113 |
|
114 |
def train_model_background(job_id, dataset_name, base_model_name=None):
|
115 |
-
"""Background training function with
|
116 |
progress = training_jobs[job_id]
|
117 |
|
118 |
try:
|
@@ -138,12 +138,10 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
138 |
TrainingArguments,
|
139 |
Trainer,
|
140 |
TrainerCallback,
|
141 |
-
DataCollatorForLanguageModeling
|
142 |
)
|
143 |
from peft import (
|
144 |
LoraConfig,
|
145 |
get_peft_model,
|
146 |
-
TaskType
|
147 |
)
|
148 |
|
149 |
# === Authentication ===
|
@@ -154,32 +152,29 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
154 |
progress.status = "loading_model"
|
155 |
progress.message = "Loading base model and tokenizer..."
|
156 |
|
157 |
-
# ===
|
158 |
-
base_model = base_model_name or "microsoft/DialoGPT-
|
159 |
new_model = f"trained-model-{job_id}"
|
160 |
-
max_length =
|
161 |
|
162 |
# === Load Model and Tokenizer ===
|
163 |
model = AutoModelForCausalLM.from_pretrained(
|
164 |
base_model,
|
165 |
cache_dir=temp_dir,
|
166 |
-
torch_dtype=torch.
|
167 |
device_map="auto" if torch.cuda.is_available() else "cpu",
|
168 |
-
trust_remote_code=True
|
169 |
-
low_cpu_mem_usage=True
|
170 |
)
|
171 |
|
172 |
tokenizer = AutoTokenizer.from_pretrained(
|
173 |
base_model,
|
174 |
cache_dir=temp_dir,
|
175 |
-
trust_remote_code=True
|
176 |
-
padding_side="right"
|
177 |
)
|
178 |
|
179 |
# Add padding token if not present
|
180 |
if tokenizer.pad_token is None:
|
181 |
tokenizer.pad_token = tokenizer.eos_token
|
182 |
-
tokenizer.pad_token_id = tokenizer.eos_token_id
|
183 |
|
184 |
# Resize token embeddings if needed
|
185 |
model.resize_token_embeddings(len(tokenizer))
|
@@ -189,17 +184,13 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
189 |
|
190 |
# === LoRA Config ===
|
191 |
peft_config = LoraConfig(
|
192 |
-
r=
|
193 |
-
lora_alpha=
|
194 |
-
lora_dropout=0.
|
195 |
bias="none",
|
196 |
-
task_type=
|
197 |
-
target_modules=["c_attn", "c_proj"],
|
198 |
)
|
199 |
model = get_peft_model(model, peft_config)
|
200 |
-
|
201 |
-
# Print trainable parameters
|
202 |
-
model.print_trainable_parameters()
|
203 |
|
204 |
progress.status = "loading_dataset"
|
205 |
progress.message = "Loading and preparing dataset..."
|
@@ -221,62 +212,71 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
221 |
progress.detected_columns = {"question": question_col, "answer": answer_col}
|
222 |
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
|
223 |
|
224 |
-
# Use subset for faster
|
225 |
-
|
226 |
-
dataset = dataset.shuffle(seed=42).select(range(dataset_size))
|
227 |
|
228 |
-
#
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
conversation = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
|
235 |
-
return {"text": conversation}
|
236 |
-
|
237 |
-
# Apply formatting
|
238 |
-
formatted_dataset = dataset.map(format_conversation, remove_columns=dataset.column_names)
|
239 |
-
|
240 |
-
# Filter out very short or very long examples
|
241 |
-
formatted_dataset = formatted_dataset.filter(lambda x: 10 < len(x["text"]) < max_length * 3)
|
242 |
|
243 |
-
|
244 |
-
|
245 |
-
# Tokenize the text
|
246 |
-
model_inputs = tokenizer(
|
247 |
-
examples["text"],
|
248 |
-
truncation=True,
|
249 |
-
padding=False, # Will be handled by data collator
|
250 |
-
max_length=max_length,
|
251 |
-
return_tensors=None,
|
252 |
-
)
|
253 |
-
|
254 |
-
# For causal LM, labels are the same as input_ids
|
255 |
-
model_inputs["labels"] = model_inputs["input_ids"].copy()
|
256 |
-
return model_inputs
|
257 |
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
266 |
-
#
|
267 |
-
batch_size =
|
268 |
-
gradient_accumulation_steps =
|
269 |
-
num_epochs =
|
270 |
-
learning_rate = 2e-4
|
271 |
|
272 |
-
steps_per_epoch = len(
|
273 |
total_steps = steps_per_epoch * num_epochs
|
274 |
-
warmup_steps = max(10, total_steps // 10)
|
275 |
|
276 |
progress.total_steps = total_steps
|
277 |
progress.status = "training"
|
278 |
progress.message = "Starting training..."
|
279 |
|
|
|
280 |
output_dir = os.path.join(temp_dir, new_model)
|
281 |
os.makedirs(output_dir, exist_ok=True)
|
282 |
|
@@ -285,33 +285,19 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
285 |
per_device_train_batch_size=batch_size,
|
286 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
287 |
num_train_epochs=num_epochs,
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
evaluation_strategy="no",
|
294 |
logging_strategy="steps",
|
295 |
save_strategy="steps",
|
296 |
-
fp16=
|
297 |
bf16=False,
|
298 |
dataloader_num_workers=0,
|
299 |
remove_unused_columns=False,
|
300 |
report_to=None,
|
301 |
prediction_loss_only=True,
|
302 |
-
optim="adamw_torch",
|
303 |
-
weight_decay=0.01,
|
304 |
-
lr_scheduler_type="cosine",
|
305 |
-
gradient_checkpointing=True,
|
306 |
-
dataloader_pin_memory=False,
|
307 |
-
)
|
308 |
-
|
309 |
-
# === Data Collator ===
|
310 |
-
data_collator = DataCollatorForLanguageModeling(
|
311 |
-
tokenizer=tokenizer,
|
312 |
-
mlm=False,
|
313 |
-
return_tensors="pt",
|
314 |
-
pad_to_multiple_of=8 if torch.cuda.is_available() else None,
|
315 |
)
|
316 |
|
317 |
# Custom callback to track progress
|
@@ -322,7 +308,8 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
322 |
|
323 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
324 |
current_time = time.time()
|
325 |
-
|
|
|
326 |
self.progress_tracker.update_progress(
|
327 |
state.global_step,
|
328 |
state.max_steps,
|
@@ -330,12 +317,10 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
330 |
)
|
331 |
self.last_update = current_time
|
332 |
|
|
|
333 |
if logs:
|
334 |
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
335 |
-
|
336 |
-
if isinstance(loss, (int, float)):
|
337 |
-
loss = f"{loss:.4f}"
|
338 |
-
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}, LR: {lr}"
|
339 |
|
340 |
def on_train_begin(self, args, state, control, **kwargs):
|
341 |
self.progress_tracker.status = "training"
|
@@ -349,50 +334,28 @@ def train_model_background(job_id, dataset_name, base_model_name=None):
|
|
349 |
trainer = Trainer(
|
350 |
model=model,
|
351 |
args=training_args,
|
352 |
-
train_dataset=
|
353 |
-
data_collator=data_collator,
|
354 |
callbacks=[ProgressCallback(progress)],
|
355 |
tokenizer=tokenizer,
|
356 |
)
|
357 |
|
358 |
# === Train & Save ===
|
359 |
trainer.train()
|
360 |
-
|
361 |
-
# Save the model properly
|
362 |
trainer.save_model(output_dir)
|
363 |
tokenizer.save_pretrained(output_dir)
|
364 |
|
365 |
-
# Save
|
366 |
-
with open(os.path.join(output_dir, "base_model.txt"), "w") as f:
|
367 |
-
f.write(base_model)
|
368 |
-
|
369 |
-
training_info = {
|
370 |
-
"base_model": base_model,
|
371 |
-
"dataset_name": dataset_name,
|
372 |
-
"dataset_size": len(tokenized_dataset),
|
373 |
-
"max_length": max_length,
|
374 |
-
"batch_size": batch_size,
|
375 |
-
"learning_rate": learning_rate,
|
376 |
-
"num_epochs": num_epochs,
|
377 |
-
"total_steps": total_steps,
|
378 |
-
"detected_columns": progress.detected_columns
|
379 |
-
}
|
380 |
-
|
381 |
-
with open(os.path.join(output_dir, "training_info.json"), "w") as f:
|
382 |
-
import json
|
383 |
-
json.dump(training_info, f, indent=2)
|
384 |
-
|
385 |
-
# Update progress
|
386 |
progress.model_path = output_dir
|
387 |
progress.status = "completed"
|
388 |
progress.progress = 100
|
389 |
-
progress.message = f"Training completed
|
390 |
|
391 |
-
# Keep the temp directory for download
|
392 |
def cleanup_temp_dir():
|
393 |
-
time.sleep(
|
394 |
try:
|
395 |
shutil.rmtree(temp_dir)
|
|
|
396 |
if job_id in training_jobs:
|
397 |
del training_jobs[job_id]
|
398 |
except:
|
@@ -427,7 +390,6 @@ def create_model_zip(model_path, job_id):
|
|
427 |
|
428 |
memory_file.seek(0)
|
429 |
return memory_file
|
430 |
-
|
431 |
# ============== API ROUTES ==============
|
432 |
@app.route('/api/train', methods=['POST'])
|
433 |
def start_training():
|
@@ -435,9 +397,9 @@ def start_training():
|
|
435 |
try:
|
436 |
data = request.get_json() if request.is_json else {}
|
437 |
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
|
438 |
-
base_model_name = data.get('base_model', 'microsoft/DialoGPT-
|
439 |
|
440 |
-
job_id = str(uuid.uuid4())[:8]
|
441 |
progress = TrainingProgress(job_id)
|
442 |
training_jobs[job_id] = progress
|
443 |
|
@@ -531,7 +493,7 @@ def home():
|
|
531 |
"url": "/api/train",
|
532 |
"body": {
|
533 |
"dataset_name": "your-dataset-name",
|
534 |
-
"base_model": "microsoft/DialoGPT-
|
535 |
}
|
536 |
}
|
537 |
}
|
@@ -542,5 +504,5 @@ def health():
|
|
542 |
return jsonify({"status": "healthy"})
|
543 |
|
544 |
if __name__ == '__main__':
|
545 |
-
port = int(os.environ.get('PORT', 7860))
|
546 |
app.run(host='0.0.0.0', port=port, debug=False)
|
|
|
112 |
return question_col, answer_col
|
113 |
|
114 |
def train_model_background(job_id, dataset_name, base_model_name=None):
|
115 |
+
"""Background training function with progress tracking"""
|
116 |
progress = training_jobs[job_id]
|
117 |
|
118 |
try:
|
|
|
138 |
TrainingArguments,
|
139 |
Trainer,
|
140 |
TrainerCallback,
|
|
|
141 |
)
|
142 |
from peft import (
|
143 |
LoraConfig,
|
144 |
get_peft_model,
|
|
|
145 |
)
|
146 |
|
147 |
# === Authentication ===
|
|
|
152 |
progress.status = "loading_model"
|
153 |
progress.message = "Loading base model and tokenizer..."
|
154 |
|
155 |
+
# === Configuration ===
|
156 |
+
base_model = base_model_name or "microsoft/DialoGPT-small"
|
157 |
new_model = f"trained-model-{job_id}"
|
158 |
+
max_length = 256
|
159 |
|
160 |
# === Load Model and Tokenizer ===
|
161 |
model = AutoModelForCausalLM.from_pretrained(
|
162 |
base_model,
|
163 |
cache_dir=temp_dir,
|
164 |
+
torch_dtype=torch.float32,
|
165 |
device_map="auto" if torch.cuda.is_available() else "cpu",
|
166 |
+
trust_remote_code=True
|
|
|
167 |
)
|
168 |
|
169 |
tokenizer = AutoTokenizer.from_pretrained(
|
170 |
base_model,
|
171 |
cache_dir=temp_dir,
|
172 |
+
trust_remote_code=True
|
|
|
173 |
)
|
174 |
|
175 |
# Add padding token if not present
|
176 |
if tokenizer.pad_token is None:
|
177 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
178 |
|
179 |
# Resize token embeddings if needed
|
180 |
model.resize_token_embeddings(len(tokenizer))
|
|
|
184 |
|
185 |
# === LoRA Config ===
|
186 |
peft_config = LoraConfig(
|
187 |
+
r=8,
|
188 |
+
lora_alpha=16,
|
189 |
+
lora_dropout=0.1,
|
190 |
bias="none",
|
191 |
+
task_type="CAUSAL_LM",
|
|
|
192 |
)
|
193 |
model = get_peft_model(model, peft_config)
|
|
|
|
|
|
|
194 |
|
195 |
progress.status = "loading_dataset"
|
196 |
progress.message = "Loading and preparing dataset..."
|
|
|
212 |
progress.detected_columns = {"question": question_col, "answer": answer_col}
|
213 |
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
|
214 |
|
215 |
+
# Use subset for faster testing (can be made configurable)
|
216 |
+
dataset = dataset.shuffle(seed=65).select(range(min(1000, len(dataset))))
|
|
|
217 |
|
218 |
+
# Custom dataset class for proper handling
|
219 |
+
class CustomDataset(torch.utils.data.Dataset):
|
220 |
+
def __init__(self, texts, tokenizer, max_length):
|
221 |
+
self.texts = texts
|
222 |
+
self.tokenizer = tokenizer
|
223 |
+
self.max_length = max_length
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
+
def __len__(self):
|
226 |
+
return len(self.texts)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
+
def __getitem__(self, idx):
|
229 |
+
text = self.texts[idx]
|
230 |
+
|
231 |
+
# Tokenize the text
|
232 |
+
encoding = self.tokenizer(
|
233 |
+
text,
|
234 |
+
truncation=True,
|
235 |
+
padding='max_length',
|
236 |
+
max_length=self.max_length,
|
237 |
+
return_tensors='pt'
|
238 |
+
)
|
239 |
+
|
240 |
+
# Flatten the tensors (remove batch dimension)
|
241 |
+
input_ids = encoding['input_ids'].squeeze()
|
242 |
+
attention_mask = encoding['attention_mask'].squeeze()
|
243 |
+
|
244 |
+
# For causal language modeling, labels are the same as input_ids
|
245 |
+
labels = input_ids.clone()
|
246 |
+
|
247 |
+
# Set labels to -100 for padding tokens (they won't contribute to loss)
|
248 |
+
labels[attention_mask == 0] = -100
|
249 |
+
|
250 |
+
return {
|
251 |
+
'input_ids': input_ids,
|
252 |
+
'attention_mask': attention_mask,
|
253 |
+
'labels': labels
|
254 |
+
}
|
255 |
+
|
256 |
+
# Prepare texts using detected columns
|
257 |
+
texts = []
|
258 |
+
for item in dataset:
|
259 |
+
question = str(item[question_col]).strip()
|
260 |
+
answer = str(item[answer_col]).strip()
|
261 |
+
text = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
|
262 |
+
texts.append(text)
|
263 |
+
|
264 |
+
# Create custom dataset
|
265 |
+
train_dataset = CustomDataset(texts, tokenizer, max_length)
|
266 |
|
267 |
+
# Calculate total training steps
|
268 |
+
batch_size = 2
|
269 |
+
gradient_accumulation_steps = 1
|
270 |
+
num_epochs = 1
|
|
|
271 |
|
272 |
+
steps_per_epoch = len(train_dataset) // (batch_size * gradient_accumulation_steps)
|
273 |
total_steps = steps_per_epoch * num_epochs
|
|
|
274 |
|
275 |
progress.total_steps = total_steps
|
276 |
progress.status = "training"
|
277 |
progress.message = "Starting training..."
|
278 |
|
279 |
+
# === Training Arguments ===
|
280 |
output_dir = os.path.join(temp_dir, new_model)
|
281 |
os.makedirs(output_dir, exist_ok=True)
|
282 |
|
|
|
285 |
per_device_train_batch_size=batch_size,
|
286 |
gradient_accumulation_steps=gradient_accumulation_steps,
|
287 |
num_train_epochs=num_epochs,
|
288 |
+
logging_steps=1,
|
289 |
+
save_steps=max(1, total_steps // 2),
|
290 |
+
save_total_limit=1,
|
291 |
+
learning_rate=5e-5,
|
292 |
+
warmup_steps=2,
|
|
|
293 |
logging_strategy="steps",
|
294 |
save_strategy="steps",
|
295 |
+
fp16=False,
|
296 |
bf16=False,
|
297 |
dataloader_num_workers=0,
|
298 |
remove_unused_columns=False,
|
299 |
report_to=None,
|
300 |
prediction_loss_only=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
)
|
302 |
|
303 |
# Custom callback to track progress
|
|
|
308 |
|
309 |
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
|
310 |
current_time = time.time()
|
311 |
+
# Update every 3 seconds
|
312 |
+
if current_time - self.last_update >= 3:
|
313 |
self.progress_tracker.update_progress(
|
314 |
state.global_step,
|
315 |
state.max_steps,
|
|
|
317 |
)
|
318 |
self.last_update = current_time
|
319 |
|
320 |
+
# Log training metrics if available
|
321 |
if logs:
|
322 |
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
|
323 |
+
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}"
|
|
|
|
|
|
|
324 |
|
325 |
def on_train_begin(self, args, state, control, **kwargs):
|
326 |
self.progress_tracker.status = "training"
|
|
|
334 |
trainer = Trainer(
|
335 |
model=model,
|
336 |
args=training_args,
|
337 |
+
train_dataset=train_dataset,
|
|
|
338 |
callbacks=[ProgressCallback(progress)],
|
339 |
tokenizer=tokenizer,
|
340 |
)
|
341 |
|
342 |
# === Train & Save ===
|
343 |
trainer.train()
|
|
|
|
|
344 |
trainer.save_model(output_dir)
|
345 |
tokenizer.save_pretrained(output_dir)
|
346 |
|
347 |
+
# Save model info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
progress.model_path = output_dir
|
349 |
progress.status = "completed"
|
350 |
progress.progress = 100
|
351 |
+
progress.message = f"Training completed! Model ready for download."
|
352 |
|
353 |
+
# Keep the temp directory for download (cleanup after 1 hour)
|
354 |
def cleanup_temp_dir():
|
355 |
+
time.sleep(3600) # Wait 1 hour before cleanup
|
356 |
try:
|
357 |
shutil.rmtree(temp_dir)
|
358 |
+
# Remove from training_jobs after cleanup
|
359 |
if job_id in training_jobs:
|
360 |
del training_jobs[job_id]
|
361 |
except:
|
|
|
390 |
|
391 |
memory_file.seek(0)
|
392 |
return memory_file
|
|
|
393 |
# ============== API ROUTES ==============
|
394 |
@app.route('/api/train', methods=['POST'])
|
395 |
def start_training():
|
|
|
397 |
try:
|
398 |
data = request.get_json() if request.is_json else {}
|
399 |
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
|
400 |
+
base_model_name = data.get('base_model', 'microsoft/DialoGPT-small')
|
401 |
|
402 |
+
job_id = str(uuid.uuid4())[:8] # Short UUID
|
403 |
progress = TrainingProgress(job_id)
|
404 |
training_jobs[job_id] = progress
|
405 |
|
|
|
493 |
"url": "/api/train",
|
494 |
"body": {
|
495 |
"dataset_name": "your-dataset-name",
|
496 |
+
"base_model": "microsoft/DialoGPT-small"
|
497 |
}
|
498 |
}
|
499 |
}
|
|
|
504 |
return jsonify({"status": "healthy"})
|
505 |
|
506 |
if __name__ == '__main__':
|
507 |
+
port = int(os.environ.get('PORT', 7860)) # HF Spaces uses port 7860
|
508 |
app.run(host='0.0.0.0', port=port, debug=False)
|