artour-filter-spam / app /filter_review.py
Yondika Vio Landa
update for hf
82a5535
raw
history blame contribute delete
940 Bytes
import os
os.environ["HF_HOME"] = "/tmp/hf_home"
os.makedirs("/tmp/hf_cache", exist_ok=True)
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
MODEL_FINETUNED = "yondikavl/artour-spam-filter"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = AutoModelForSequenceClassification.from_pretrained( MODEL_FINETUNED)
tokenizer = AutoTokenizer.from_pretrained(MODEL_FINETUNED)
model.eval()
def filter_review(text):
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128)
inputs = {k: v.to(device) for k, v in inputs.items()}
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
label = "spam" if pred == 1 else "non-spam"
confidence = probs[0][pred].item()
return label, confidence