import os os.environ["HF_HOME"] = "/tmp/hf_home" os.makedirs("/tmp/hf_cache", exist_ok=True) from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import torch.nn.functional as F MODEL_FINETUNED = "yondikavl/artour-spam-filter" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = AutoModelForSequenceClassification.from_pretrained( MODEL_FINETUNED) tokenizer = AutoTokenizer.from_pretrained(MODEL_FINETUNED) model.eval() def filter_review(text): inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=128) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) probs = F.softmax(outputs.logits, dim=1) pred = torch.argmax(probs, dim=1).item() label = "spam" if pred == 1 else "non-spam" confidence = probs[0][pred].item() return label, confidence