Update app.py
Browse files
app.py
CHANGED
|
@@ -1,50 +1,56 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
-
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import Chroma
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 9 |
from langchain.chains import ConversationChain
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
|
|
|
|
|
|
| 11 |
from pathlib import Path
|
| 12 |
import chromadb
|
| 13 |
from unidecode import unidecode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
import re
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
device_map="auto",
|
| 28 |
-
max_new_tokens=max_tokens,
|
| 29 |
-
do_sample=True,
|
| 30 |
-
top_k=top_k,
|
| 31 |
-
num_return_sequences=1,
|
| 32 |
-
eos_token_id=muril_tokenizer.eos_token_id
|
| 33 |
-
)
|
| 34 |
-
return muril_pipeline
|
| 35 |
|
| 36 |
# Load PDF document and create doc splits
|
| 37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
|
|
|
| 38 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 39 |
pages = []
|
| 40 |
for loader in loaders:
|
| 41 |
pages.extend(loader.load())
|
|
|
|
| 42 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 43 |
-
chunk_size=chunk_size,
|
| 44 |
-
chunk_overlap=chunk_overlap)
|
| 45 |
doc_splits = text_splitter.split_documents(pages)
|
| 46 |
return doc_splits
|
| 47 |
|
|
|
|
| 48 |
# Create vector database
|
| 49 |
def create_db(splits, collection_name):
|
| 50 |
embedding = HuggingFaceEmbeddings()
|
|
@@ -54,16 +60,102 @@ def create_db(splits, collection_name):
|
|
| 54 |
embedding=embedding,
|
| 55 |
client=new_client,
|
| 56 |
collection_name=collection_name,
|
|
|
|
| 57 |
)
|
| 58 |
return vectordb
|
| 59 |
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
#
|
| 66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
progress(0.75, desc="Defining buffer memory...")
|
| 69 |
memory = ConversationBufferMemory(
|
|
@@ -71,25 +163,123 @@ def initialize_llmchain(temperature, max_tokens, top_k, vector_db, progress=gr.P
|
|
| 71 |
output_key='answer',
|
| 72 |
return_messages=True
|
| 73 |
)
|
| 74 |
-
retriever
|
|
|
|
| 75 |
progress(0.8, desc="Defining retrieval chain...")
|
| 76 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 77 |
llm,
|
| 78 |
retriever=retriever,
|
| 79 |
chain_type="stuff",
|
| 80 |
memory=memory,
|
|
|
|
| 81 |
return_source_documents=True,
|
|
|
|
| 82 |
verbose=False,
|
| 83 |
)
|
| 84 |
progress(0.9, desc="Done!")
|
| 85 |
return qa_chain
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
return qa_chain, "Complete!"
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
def demo():
|
| 94 |
with gr.Blocks(theme="base") as demo:
|
| 95 |
vector_db = gr.State()
|
|
@@ -119,18 +309,23 @@ def demo():
|
|
| 119 |
|
| 120 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
| 121 |
with gr.Row():
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
|
|
|
|
|
|
| 129 |
with gr.Row():
|
| 130 |
-
llm_progress = gr.Textbox(value="None",
|
| 131 |
with gr.Row():
|
| 132 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
| 133 |
|
|
|
|
|
|
|
|
|
|
| 134 |
with gr.Tab("Step 4: Chatbot"):
|
| 135 |
chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
|
| 136 |
with gr.Accordion("Advanced: Document References", open=False):
|
|
@@ -152,7 +347,7 @@ def demo():
|
|
| 152 |
generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
| 153 |
qachain_btn.click(
|
| 154 |
initialize_LLM,
|
| 155 |
-
inputs=[slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
| 156 |
outputs=[qa_chain, llm_progress]
|
| 157 |
).then(
|
| 158 |
lambda: [None, "", 0, "", 0, "", 0],
|
|
@@ -180,5 +375,8 @@ def demo():
|
|
| 180 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
| 181 |
queue=False
|
| 182 |
)
|
|
|
|
|
|
|
| 183 |
|
| 184 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
+
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
from langchain_community.vectorstores import Chroma
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 9 |
+
from langchain_community.llms import HuggingFacePipeline
|
| 10 |
from langchain.chains import ConversationChain
|
| 11 |
from langchain.memory import ConversationBufferMemory
|
| 12 |
+
from langchain_community.llms import HuggingFaceEndpoint
|
| 13 |
+
|
| 14 |
from pathlib import Path
|
| 15 |
import chromadb
|
| 16 |
from unidecode import unidecode
|
| 17 |
+
|
| 18 |
+
from transformers import AutoTokenizer
|
| 19 |
+
import transformers
|
| 20 |
+
import torch
|
| 21 |
+
import tqdm
|
| 22 |
+
import accelerate
|
| 23 |
import re
|
| 24 |
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# default_persist_directory = './chroma_HF/'
|
| 28 |
+
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
| 29 |
+
"google/gemma-7b-it","google/gemma-2b-it", \
|
| 30 |
+
"HuggingFaceH4/zephyr-7b-beta", "HuggingFaceH4/zephyr-7b-gemma-v0.1", \
|
| 31 |
+
"meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2", \
|
| 32 |
+
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct", \
|
| 33 |
+
"google/flan-t5-xxl"
|
| 34 |
+
]
|
| 35 |
+
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
# Load PDF document and create doc splits
|
| 38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
| 39 |
+
# Processing for one document only
|
| 40 |
+
# loader = PyPDFLoader(file_path)
|
| 41 |
+
# pages = loader.load()
|
| 42 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 43 |
pages = []
|
| 44 |
for loader in loaders:
|
| 45 |
pages.extend(loader.load())
|
| 46 |
+
# text_splitter = RecursiveCharacterTextSplitter(chunk_size = 600, chunk_overlap = 50)
|
| 47 |
text_splitter = RecursiveCharacterTextSplitter(
|
| 48 |
+
chunk_size = chunk_size,
|
| 49 |
+
chunk_overlap = chunk_overlap)
|
| 50 |
doc_splits = text_splitter.split_documents(pages)
|
| 51 |
return doc_splits
|
| 52 |
|
| 53 |
+
|
| 54 |
# Create vector database
|
| 55 |
def create_db(splits, collection_name):
|
| 56 |
embedding = HuggingFaceEmbeddings()
|
|
|
|
| 60 |
embedding=embedding,
|
| 61 |
client=new_client,
|
| 62 |
collection_name=collection_name,
|
| 63 |
+
# persist_directory=default_persist_directory
|
| 64 |
)
|
| 65 |
return vectordb
|
| 66 |
|
| 67 |
+
|
| 68 |
+
# Load vector database
|
| 69 |
+
def load_db():
|
| 70 |
+
embedding = HuggingFaceEmbeddings()
|
| 71 |
+
vectordb = Chroma(
|
| 72 |
+
# persist_directory=default_persist_directory,
|
| 73 |
+
embedding_function=embedding)
|
| 74 |
+
return vectordb
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Initialize langchain LLM chain
|
| 78 |
+
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 79 |
+
progress(0.1, desc="Initializing HF tokenizer...")
|
| 80 |
+
# HuggingFacePipeline uses local model
|
| 81 |
+
# Note: it will download model locally...
|
| 82 |
+
# tokenizer=AutoTokenizer.from_pretrained(llm_model)
|
| 83 |
+
# progress(0.5, desc="Initializing HF pipeline...")
|
| 84 |
+
# pipeline=transformers.pipeline(
|
| 85 |
+
# "text-generation",
|
| 86 |
+
# model=llm_model,
|
| 87 |
+
# tokenizer=tokenizer,
|
| 88 |
+
# torch_dtype=torch.bfloat16,
|
| 89 |
+
# trust_remote_code=True,
|
| 90 |
+
# device_map="auto",
|
| 91 |
+
# # max_length=1024,
|
| 92 |
+
# max_new_tokens=max_tokens,
|
| 93 |
+
# do_sample=True,
|
| 94 |
+
# top_k=top_k,
|
| 95 |
+
# num_return_sequences=1,
|
| 96 |
+
# eos_token_id=tokenizer.eos_token_id
|
| 97 |
+
# )
|
| 98 |
+
# llm = HuggingFacePipeline(pipeline=pipeline, model_kwargs={'temperature': temperature})
|
| 99 |
|
| 100 |
+
# HuggingFaceHub uses HF inference endpoints
|
| 101 |
+
progress(0.5, desc="Initializing HF Hub...")
|
| 102 |
+
# Use of trust_remote_code as model_kwargs
|
| 103 |
+
# Warning: langchain issue
|
| 104 |
+
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
| 105 |
+
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 106 |
+
llm = HuggingFaceEndpoint(
|
| 107 |
+
repo_id=llm_model,
|
| 108 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
|
| 109 |
+
temperature = temperature,
|
| 110 |
+
max_new_tokens = max_tokens,
|
| 111 |
+
top_k = top_k,
|
| 112 |
+
load_in_8bit = True,
|
| 113 |
+
)
|
| 114 |
+
elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
| 115 |
+
raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
| 116 |
+
llm = HuggingFaceEndpoint(
|
| 117 |
+
repo_id=llm_model,
|
| 118 |
+
temperature = temperature,
|
| 119 |
+
max_new_tokens = max_tokens,
|
| 120 |
+
top_k = top_k,
|
| 121 |
+
)
|
| 122 |
+
elif llm_model == "microsoft/phi-2":
|
| 123 |
+
# raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
| 124 |
+
llm = HuggingFaceEndpoint(
|
| 125 |
+
repo_id=llm_model,
|
| 126 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
| 127 |
+
temperature = temperature,
|
| 128 |
+
max_new_tokens = max_tokens,
|
| 129 |
+
top_k = top_k,
|
| 130 |
+
trust_remote_code = True,
|
| 131 |
+
torch_dtype = "auto",
|
| 132 |
+
)
|
| 133 |
+
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
| 134 |
+
llm = HuggingFaceEndpoint(
|
| 135 |
+
repo_id=llm_model,
|
| 136 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
|
| 137 |
+
temperature = temperature,
|
| 138 |
+
max_new_tokens = 250,
|
| 139 |
+
top_k = top_k,
|
| 140 |
+
)
|
| 141 |
+
elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
| 142 |
+
raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
| 143 |
+
llm = HuggingFaceEndpoint(
|
| 144 |
+
repo_id=llm_model,
|
| 145 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
| 146 |
+
temperature = temperature,
|
| 147 |
+
max_new_tokens = max_tokens,
|
| 148 |
+
top_k = top_k,
|
| 149 |
+
)
|
| 150 |
+
else:
|
| 151 |
+
llm = HuggingFaceEndpoint(
|
| 152 |
+
repo_id=llm_model,
|
| 153 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
| 154 |
+
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
|
| 155 |
+
temperature = temperature,
|
| 156 |
+
max_new_tokens = max_tokens,
|
| 157 |
+
top_k = top_k,
|
| 158 |
+
)
|
| 159 |
|
| 160 |
progress(0.75, desc="Defining buffer memory...")
|
| 161 |
memory = ConversationBufferMemory(
|
|
|
|
| 163 |
output_key='answer',
|
| 164 |
return_messages=True
|
| 165 |
)
|
| 166 |
+
# retriever=vector_db.as_retriever(search_type="similarity", search_kwargs={'k': 3})
|
| 167 |
+
retriever=vector_db.as_retriever()
|
| 168 |
progress(0.8, desc="Defining retrieval chain...")
|
| 169 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
| 170 |
llm,
|
| 171 |
retriever=retriever,
|
| 172 |
chain_type="stuff",
|
| 173 |
memory=memory,
|
| 174 |
+
# combine_docs_chain_kwargs={"prompt": your_prompt})
|
| 175 |
return_source_documents=True,
|
| 176 |
+
#return_generated_question=False,
|
| 177 |
verbose=False,
|
| 178 |
)
|
| 179 |
progress(0.9, desc="Done!")
|
| 180 |
return qa_chain
|
| 181 |
|
| 182 |
+
|
| 183 |
+
# Generate collection name for vector database
|
| 184 |
+
# - Use filepath as input, ensuring unicode text
|
| 185 |
+
def create_collection_name(filepath):
|
| 186 |
+
# Extract filename without extension
|
| 187 |
+
collection_name = Path(filepath).stem
|
| 188 |
+
# Fix potential issues from naming convention
|
| 189 |
+
## Remove space
|
| 190 |
+
collection_name = collection_name.replace(" ","-")
|
| 191 |
+
## ASCII transliterations of Unicode text
|
| 192 |
+
collection_name = unidecode(collection_name)
|
| 193 |
+
## Remove special characters
|
| 194 |
+
#collection_name = re.findall("[\dA-Za-z]*", collection_name)[0]
|
| 195 |
+
collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
|
| 196 |
+
## Limit length to 50 characters
|
| 197 |
+
collection_name = collection_name[:50]
|
| 198 |
+
## Minimum length of 3 characters
|
| 199 |
+
if len(collection_name) < 3:
|
| 200 |
+
collection_name = collection_name + 'xyz'
|
| 201 |
+
## Enforce start and end as alphanumeric character
|
| 202 |
+
if not collection_name[0].isalnum():
|
| 203 |
+
collection_name = 'A' + collection_name[1:]
|
| 204 |
+
if not collection_name[-1].isalnum():
|
| 205 |
+
collection_name = collection_name[:-1] + 'Z'
|
| 206 |
+
print('Filepath: ', filepath)
|
| 207 |
+
print('Collection name: ', collection_name)
|
| 208 |
+
return collection_name
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
# Initialize database
|
| 212 |
+
def initialize_database(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
| 213 |
+
# Create list of documents (when valid)
|
| 214 |
+
list_file_path = [x.name for x in list_file_obj if x is not None]
|
| 215 |
+
# Create collection_name for vector database
|
| 216 |
+
progress(0.1, desc="Creating collection name...")
|
| 217 |
+
collection_name = create_collection_name(list_file_path[0])
|
| 218 |
+
progress(0.25, desc="Loading document...")
|
| 219 |
+
# Load document and create splits
|
| 220 |
+
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
| 221 |
+
# Create or load vector database
|
| 222 |
+
progress(0.5, desc="Generating vector database...")
|
| 223 |
+
# global vector_db
|
| 224 |
+
vector_db = create_db(doc_splits, collection_name)
|
| 225 |
+
progress(0.9, desc="Done!")
|
| 226 |
+
return vector_db, collection_name, "Complete!"
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 230 |
+
# print("llm_option",llm_option)
|
| 231 |
+
llm_name = list_llm[llm_option]
|
| 232 |
+
print("llm_name: ",llm_name)
|
| 233 |
+
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
|
| 234 |
return qa_chain, "Complete!"
|
| 235 |
|
| 236 |
+
|
| 237 |
+
def format_chat_history(message, chat_history):
|
| 238 |
+
formatted_chat_history = []
|
| 239 |
+
for user_message, bot_message in chat_history:
|
| 240 |
+
formatted_chat_history.append(f"User: {user_message}")
|
| 241 |
+
formatted_chat_history.append(f"Assistant: {bot_message}")
|
| 242 |
+
return formatted_chat_history
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
def conversation(qa_chain, message, history):
|
| 246 |
+
formatted_chat_history = format_chat_history(message, history)
|
| 247 |
+
#print("formatted_chat_history",formatted_chat_history)
|
| 248 |
+
|
| 249 |
+
# Generate response using QA chain
|
| 250 |
+
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
| 251 |
+
response_answer = response["answer"]
|
| 252 |
+
if response_answer.find("Helpful Answer:") != -1:
|
| 253 |
+
response_answer = response_answer.split("Helpful Answer:")[-1]
|
| 254 |
+
response_sources = response["source_documents"]
|
| 255 |
+
response_source1 = response_sources[0].page_content.strip()
|
| 256 |
+
response_source2 = response_sources[1].page_content.strip()
|
| 257 |
+
response_source3 = response_sources[2].page_content.strip()
|
| 258 |
+
# Langchain sources are zero-based
|
| 259 |
+
response_source1_page = response_sources[0].metadata["page"] + 1
|
| 260 |
+
response_source2_page = response_sources[1].metadata["page"] + 1
|
| 261 |
+
response_source3_page = response_sources[2].metadata["page"] + 1
|
| 262 |
+
# print ('chat response: ', response_answer)
|
| 263 |
+
# print('DB source', response_sources)
|
| 264 |
+
|
| 265 |
+
# Append user message and response to chat history
|
| 266 |
+
new_history = history + [(message, response_answer)]
|
| 267 |
+
# return gr.update(value=""), new_history, response_sources[0], response_sources[1]
|
| 268 |
+
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def upload_file(file_obj):
|
| 272 |
+
list_file_path = []
|
| 273 |
+
for idx, file in enumerate(file_obj):
|
| 274 |
+
file_path = file_obj.name
|
| 275 |
+
list_file_path.append(file_path)
|
| 276 |
+
# print(file_path)
|
| 277 |
+
# initialize_database(file_path, progress)
|
| 278 |
+
return list_file_path
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
|
| 283 |
def demo():
|
| 284 |
with gr.Blocks(theme="base") as demo:
|
| 285 |
vector_db = gr.State()
|
|
|
|
| 309 |
|
| 310 |
with gr.Tab("Step 3 - Initialize QA chain"):
|
| 311 |
with gr.Row():
|
| 312 |
+
llm_btn = gr.Radio(list_llm_simple, \
|
| 313 |
+
label="LLM models", value = list_llm_simple[0], type="index", info="Choose your LLM model")
|
| 314 |
+
with gr.Accordion("Advanced options - LLM model", open=False):
|
| 315 |
+
with gr.Row():
|
| 316 |
+
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.7, step=0.1, label="Temperature", info="Model temperature", interactive=True)
|
| 317 |
+
with gr.Row():
|
| 318 |
+
slider_maxtokens = gr.Slider(minimum = 224, maximum = 4096, value=1024, step=32, label="Max Tokens", info="Model max tokens", interactive=True)
|
| 319 |
+
with gr.Row():
|
| 320 |
+
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k samples", info="Model top-k samples", interactive=True)
|
| 321 |
with gr.Row():
|
| 322 |
+
llm_progress = gr.Textbox(value="None",label="QA chain initialization")
|
| 323 |
with gr.Row():
|
| 324 |
qachain_btn = gr.Button("Initialize Question Answering chain")
|
| 325 |
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
|
| 329 |
with gr.Tab("Step 4: Chatbot"):
|
| 330 |
chatbot = gr.Chatbot(label="Chat with your PDF", height=300)
|
| 331 |
with gr.Accordion("Advanced: Document References", open=False):
|
|
|
|
| 347 |
generate_db_btn.click(initialize_database, inputs=[document, slider_chunk_size, slider_chunk_overlap], outputs=[vector_db, collection_name, db_progress])
|
| 348 |
qachain_btn.click(
|
| 349 |
initialize_LLM,
|
| 350 |
+
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db],
|
| 351 |
outputs=[qa_chain, llm_progress]
|
| 352 |
).then(
|
| 353 |
lambda: [None, "", 0, "", 0, "", 0],
|
|
|
|
| 375 |
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page],
|
| 376 |
queue=False
|
| 377 |
)
|
| 378 |
+
demo.queue().launch(debug=True)
|
| 379 |
+
|
| 380 |
|
| 381 |
+
if __name__ == "__main__":
|
| 382 |
+
demo()
|