DMOSpeech2-demo / app.py
yl4579's picture
Update app.py
a28c293 verified
raw
history blame
12 kB
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import time
from pathlib import Path
from huggingface_hub import hf_hub_download
import os
# Import the inference module (assuming it's named 'infer.py' based on the notebook)
from infer import DMOInference
# Global model instance
model = None
device = "cuda" if torch.cuda.is_available() else "cpu"
def download_models():
"""Download models from HuggingFace Hub."""
try:
print("Downloading models from HuggingFace...")
# Download student model
student_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_85000.pt",
cache_dir="./models"
)
# Download duration predictor
duration_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_1500.pt",
cache_dir="./models"
)
print(f"Student model: {student_path}")
print(f"Duration model: {duration_path}")
return student_path, duration_path
except Exception as e:
print(f"Error downloading models: {e}")
return None, None
def initialize_model():
"""Initialize the model on startup."""
global model
try:
# Download models
student_path, duration_path = download_models()
if not student_path or not duration_path:
return False, "Failed to download models from HuggingFace"
# Initialize model
model = DMOInference(
student_checkpoint_path=student_path,
duration_predictor_path=duration_path,
device=device,
model_type="F5TTS_Base"
)
return True, f"Model loaded successfully on {device.upper()}"
except Exception as e:
return False, f"Error initializing model: {str(e)}"
# Initialize model on startup
model_loaded, status_message = initialize_model()
def generate_speech(
prompt_audio,
prompt_text,
target_text,
mode,
# Advanced settings
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
temperature,
verbose
):
"""Generate speech with different configurations."""
if not model_loaded or model is None:
return None, "Model not loaded! Please refresh the page.", "", ""
if prompt_audio is None:
return None, "Please upload a reference audio!", "", ""
if not target_text:
return None, "Please enter text to generate!", "", ""
try:
start_time = time.time()
# Configure parameters based on mode
if mode == "Student Only (4 steps)":
teacher_steps = 0
student_start_step = 0
teacher_stopping_time = 1.0
elif mode == "Teacher-Guided (8 steps)":
# Default configuration from the notebook
teacher_steps = 16
teacher_stopping_time = 0.07
student_start_step = 1
elif mode == "High Diversity (16 steps)":
teacher_steps = 24
teacher_stopping_time = 0.3
student_start_step = 2
else: # Custom
teacher_steps = custom_teacher_steps
teacher_stopping_time = custom_teacher_stopping_time
student_start_step = custom_student_start_step
# Generate speech
generated_audio = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text if prompt_text else None,
teacher_steps=teacher_steps,
teacher_stopping_time=teacher_stopping_time,
student_start_step=student_start_step,
temperature=temperature,
verbose=verbose
)
end_time = time.time()
# Calculate metrics
processing_time = end_time - start_time
audio_duration = generated_audio.shape[-1] / 24000
rtf = processing_time / audio_duration
# Save audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
output_path = tmp_file.name
if isinstance(generated_audio, np.ndarray):
generated_audio = torch.from_numpy(generated_audio)
if generated_audio.dim() == 1:
generated_audio = generated_audio.unsqueeze(0)
torchaudio.save(output_path, generated_audio, 24000)
# Format metrics
metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
return output_path, "Success!", metrics, f"Mode: {mode}"
except Exception as e:
return None, f"Error: {str(e)}", "", ""
# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# 🎙️ DMOSpeech 2: Zero-Shot Text-to-Speech
Generate natural speech in any voice with just a short reference audio!
**Model Status:** {status_message} | **Device:** {device.upper()}
""")
with gr.Row():
with gr.Column(scale=1):
# Reference audio input
prompt_audio = gr.Audio(
label="📎 Reference Audio",
type="filepath",
sources=["upload", "microphone"]
)
prompt_text = gr.Textbox(
label="📝 Reference Text (optional - will auto-transcribe if empty)",
placeholder="The text spoken in the reference audio...",
lines=2
)
target_text = gr.Textbox(
label="✍️ Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=4
)
# Generation mode
mode = gr.Radio(
choices=[
"Student Only (4 steps)",
"Teacher-Guided (8 steps)",
"High Diversity (16 steps)",
"Custom"
],
value="Teacher-Guided (8 steps)",
label="🚀 Generation Mode",
info="Choose speed vs quality/diversity tradeoff"
)
# Advanced settings (collapsible)
with gr.Accordion("⚙️ Advanced Settings", open=False):
with gr.Row():
custom_teacher_steps = gr.Slider(
minimum=0,
maximum=32,
value=16,
step=1,
label="Teacher Steps",
info="More steps = higher quality"
)
custom_teacher_stopping_time = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.07,
step=0.01,
label="Teacher Stopping Time",
info="When to switch to student"
)
custom_student_start_step = gr.Slider(
minimum=0,
maximum=4,
value=1,
step=1,
label="Student Start Step",
info="Which student step to start from"
)
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Temperature",
info="0 = deterministic, >0 = more variation in speech rhythm"
)
verbose = gr.Checkbox(
value=False,
label="Verbose Output",
info="Show detailed generation steps"
)
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Output
output_audio = gr.Audio(
label="🔊 Generated Speech",
type="filepath",
autoplay=True
)
status = gr.Textbox(
label="Status",
interactive=False
)
metrics = gr.Textbox(
label="Performance Metrics",
interactive=False
)
info = gr.Textbox(
label="Generation Info",
interactive=False
)
# Tips
gr.Markdown("""
### 💡 Quick Tips:
- **Student Only**: Fastest (4 steps), good quality
- **Teacher-Guided**: Best balance (8 steps), recommended
- **High Diversity**: More natural prosody (16 steps)
- **Temperature**: Add randomness to speech rhythm
### 📊 Expected RTF (Real-Time Factor):
- Student Only: ~0.05x (20x faster than real-time)
- Teacher-Guided: ~0.10x (10x faster)
- High Diversity: ~0.20x (5x faster)
""")
# Examples section
gr.Markdown("### 🎯 Examples")
examples = [
[
None, # Will be replaced with actual audio path
"Some call me nature, others call me mother nature.",
"I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
"Teacher-Guided (8 steps)",
16, 0.07, 1, 0.0, False
],
[
None, # Will be replaced with actual audio path
"对,这就是我,万人敬仰的太乙真人。",
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
"Teacher-Guided (8 steps)",
16, 0.07, 1, 0.0, False
],
[
None,
"对,这就是我,万人敬仰的太乙真人。",
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
"High Diversity (16 steps)",
24, 0.3, 2, 0.8, False
]
]
# Note about example audio files
gr.Markdown("""
*Note: Example audio files should be uploaded to the Space. The examples above show the text configurations used in the original notebook.*
""")
# Event handler
generate_btn.click(
generate_speech,
inputs=[
prompt_audio,
prompt_text,
target_text,
mode,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
temperature,
verbose
],
outputs=[output_audio, status, metrics, info]
)
# Update visibility of custom settings based on mode
def update_custom_visibility(mode):
return gr.update(visible=(mode == "Custom"))
mode.change(
lambda x: [gr.update(interactive=(x == "Custom"))] * 3,
inputs=[mode],
outputs=[custom_teacher_steps, custom_teacher_stopping_time, custom_student_start_step]
)
# Launch the app
if __name__ == "__main__":
if not model_loaded:
print(f"Warning: Model failed to load - {status_message}")
demo.launch()