Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,039 Bytes
a28c293 407412c a28c293 1b8d1f0 a28c293 1b8d1f0 a28c293 1b8d1f0 a28c293 1b8d1f0 a28c293 1b8d1f0 a28c293 1b8d1f0 a28c293 407412c a28c293 407412c a28c293 407412c a28c293 1b8d1f0 a28c293 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 |
import gradio as gr
import torch
import torchaudio
import numpy as np
import tempfile
import time
from pathlib import Path
from huggingface_hub import hf_hub_download
import os
# Import the inference module (assuming it's named 'infer.py' based on the notebook)
from infer import DMOInference
# Global model instance
model = None
device = "cuda" if torch.cuda.is_available() else "cpu"
def download_models():
"""Download models from HuggingFace Hub."""
try:
print("Downloading models from HuggingFace...")
# Download student model
student_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_85000.pt",
cache_dir="./models"
)
# Download duration predictor
duration_path = hf_hub_download(
repo_id="yl4579/DMOSpeech2",
filename="model_1500.pt",
cache_dir="./models"
)
print(f"Student model: {student_path}")
print(f"Duration model: {duration_path}")
return student_path, duration_path
except Exception as e:
print(f"Error downloading models: {e}")
return None, None
def initialize_model():
"""Initialize the model on startup."""
global model
try:
# Download models
student_path, duration_path = download_models()
if not student_path or not duration_path:
return False, "Failed to download models from HuggingFace"
# Initialize model
model = DMOInference(
student_checkpoint_path=student_path,
duration_predictor_path=duration_path,
device=device,
model_type="F5TTS_Base"
)
return True, f"Model loaded successfully on {device.upper()}"
except Exception as e:
return False, f"Error initializing model: {str(e)}"
# Initialize model on startup
model_loaded, status_message = initialize_model()
def generate_speech(
prompt_audio,
prompt_text,
target_text,
mode,
# Advanced settings
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
temperature,
verbose
):
"""Generate speech with different configurations."""
if not model_loaded or model is None:
return None, "Model not loaded! Please refresh the page.", "", ""
if prompt_audio is None:
return None, "Please upload a reference audio!", "", ""
if not target_text:
return None, "Please enter text to generate!", "", ""
try:
start_time = time.time()
# Configure parameters based on mode
if mode == "Student Only (4 steps)":
teacher_steps = 0
student_start_step = 0
teacher_stopping_time = 1.0
elif mode == "Teacher-Guided (8 steps)":
# Default configuration from the notebook
teacher_steps = 16
teacher_stopping_time = 0.07
student_start_step = 1
elif mode == "High Diversity (16 steps)":
teacher_steps = 24
teacher_stopping_time = 0.3
student_start_step = 2
else: # Custom
teacher_steps = custom_teacher_steps
teacher_stopping_time = custom_teacher_stopping_time
student_start_step = custom_student_start_step
# Generate speech
generated_audio = model.generate(
gen_text=target_text,
audio_path=prompt_audio,
prompt_text=prompt_text if prompt_text else None,
teacher_steps=teacher_steps,
teacher_stopping_time=teacher_stopping_time,
student_start_step=student_start_step,
temperature=temperature,
verbose=verbose
)
end_time = time.time()
# Calculate metrics
processing_time = end_time - start_time
audio_duration = generated_audio.shape[-1] / 24000
rtf = processing_time / audio_duration
# Save audio
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
output_path = tmp_file.name
if isinstance(generated_audio, np.ndarray):
generated_audio = torch.from_numpy(generated_audio)
if generated_audio.dim() == 1:
generated_audio = generated_audio.unsqueeze(0)
torchaudio.save(output_path, generated_audio, 24000)
# Format metrics
metrics = f"RTF: {rtf:.2f}x ({1/rtf:.2f}x speed) | Processing: {processing_time:.2f}s for {audio_duration:.2f}s audio"
return output_path, "Success!", metrics, f"Mode: {mode}"
except Exception as e:
return None, f"Error: {str(e)}", "", ""
# Create Gradio interface
with gr.Blocks(title="DMOSpeech 2 - Zero-Shot TTS", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# 🎙️ DMOSpeech 2: Zero-Shot Text-to-Speech
Generate natural speech in any voice with just a short reference audio!
**Model Status:** {status_message} | **Device:** {device.upper()}
""")
with gr.Row():
with gr.Column(scale=1):
# Reference audio input
prompt_audio = gr.Audio(
label="📎 Reference Audio",
type="filepath",
sources=["upload", "microphone"]
)
prompt_text = gr.Textbox(
label="📝 Reference Text (optional - will auto-transcribe if empty)",
placeholder="The text spoken in the reference audio...",
lines=2
)
target_text = gr.Textbox(
label="✍️ Text to Generate",
placeholder="Enter the text you want to synthesize...",
lines=4
)
# Generation mode
mode = gr.Radio(
choices=[
"Student Only (4 steps)",
"Teacher-Guided (8 steps)",
"High Diversity (16 steps)",
"Custom"
],
value="Teacher-Guided (8 steps)",
label="🚀 Generation Mode",
info="Choose speed vs quality/diversity tradeoff"
)
# Advanced settings (collapsible)
with gr.Accordion("⚙️ Advanced Settings", open=False):
with gr.Row():
custom_teacher_steps = gr.Slider(
minimum=0,
maximum=32,
value=16,
step=1,
label="Teacher Steps",
info="More steps = higher quality"
)
custom_teacher_stopping_time = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.07,
step=0.01,
label="Teacher Stopping Time",
info="When to switch to student"
)
custom_student_start_step = gr.Slider(
minimum=0,
maximum=4,
value=1,
step=1,
label="Student Start Step",
info="Which student step to start from"
)
temperature = gr.Slider(
minimum=0.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Duration Temperature",
info="0 = deterministic, >0 = more variation in speech rhythm"
)
verbose = gr.Checkbox(
value=False,
label="Verbose Output",
info="Show detailed generation steps"
)
generate_btn = gr.Button("🎵 Generate Speech", variant="primary", size="lg")
with gr.Column(scale=1):
# Output
output_audio = gr.Audio(
label="🔊 Generated Speech",
type="filepath",
autoplay=True
)
status = gr.Textbox(
label="Status",
interactive=False
)
metrics = gr.Textbox(
label="Performance Metrics",
interactive=False
)
info = gr.Textbox(
label="Generation Info",
interactive=False
)
# Tips
gr.Markdown("""
### 💡 Quick Tips:
- **Student Only**: Fastest (4 steps), good quality
- **Teacher-Guided**: Best balance (8 steps), recommended
- **High Diversity**: More natural prosody (16 steps)
- **Temperature**: Add randomness to speech rhythm
### 📊 Expected RTF (Real-Time Factor):
- Student Only: ~0.05x (20x faster than real-time)
- Teacher-Guided: ~0.10x (10x faster)
- High Diversity: ~0.20x (5x faster)
""")
# Examples section
gr.Markdown("### 🎯 Examples")
examples = [
[
None, # Will be replaced with actual audio path
"Some call me nature, others call me mother nature.",
"I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring.",
"Teacher-Guided (8 steps)",
16, 0.07, 1, 0.0, False
],
[
None, # Will be replaced with actual audio path
"对,这就是我,万人敬仰的太乙真人。",
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
"Teacher-Guided (8 steps)",
16, 0.07, 1, 0.0, False
],
[
None,
"对,这就是我,万人敬仰的太乙真人。",
'突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道:"我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"',
"High Diversity (16 steps)",
24, 0.3, 2, 0.8, False
]
]
# Note about example audio files
gr.Markdown("""
*Note: Example audio files should be uploaded to the Space. The examples above show the text configurations used in the original notebook.*
""")
# Event handler
generate_btn.click(
generate_speech,
inputs=[
prompt_audio,
prompt_text,
target_text,
mode,
custom_teacher_steps,
custom_teacher_stopping_time,
custom_student_start_step,
temperature,
verbose
],
outputs=[output_audio, status, metrics, info]
)
# Update visibility of custom settings based on mode
def update_custom_visibility(mode):
return gr.update(visible=(mode == "Custom"))
mode.change(
lambda x: [gr.update(interactive=(x == "Custom"))] * 3,
inputs=[mode],
outputs=[custom_teacher_steps, custom_teacher_stopping_time, custom_student_start_step]
)
# Launch the app
if __name__ == "__main__":
if not model_loaded:
print(f"Warning: Model failed to load - {status_message}")
demo.launch() |