yiren98's picture
main
c1bc1cb
import os
import glob
from typing import Any, List, Optional, Tuple, Union
import torch
import numpy as np
from transformers import CLIPTokenizer, T5TokenizerFast
from library import flux_utils, train_util
from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy
from library.utils import setup_logging
setup_logging()
import logging
logger = logging.getLogger(__name__)
CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14"
T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl"
class FluxTokenizeStrategy(TokenizeStrategy):
def __init__(self, t5xxl_max_length: int = 512, tokenizer_cache_dir: Optional[str] = None) -> None:
self.t5xxl_max_length = t5xxl_max_length
self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
text = [text] if isinstance(text, str) else text
l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt")
t5_attn_mask = t5_tokens["attention_mask"]
l_tokens = l_tokens["input_ids"]
t5_tokens = t5_tokens["input_ids"]
return [l_tokens, t5_tokens, t5_attn_mask]
class FluxTextEncodingStrategy(TextEncodingStrategy):
def __init__(self, apply_t5_attn_mask: Optional[bool] = None) -> None:
"""
Args:
apply_t5_attn_mask: Default value for apply_t5_attn_mask.
"""
self.apply_t5_attn_mask = apply_t5_attn_mask
def encode_tokens(
self,
tokenize_strategy: TokenizeStrategy,
models: List[Any],
tokens: List[torch.Tensor],
apply_t5_attn_mask: Optional[bool] = None,
) -> List[torch.Tensor]:
# supports single model inference
if apply_t5_attn_mask is None:
apply_t5_attn_mask = self.apply_t5_attn_mask
clip_l, t5xxl = models if len(models) == 2 else (models[0], None)
l_tokens, t5_tokens = tokens[:2]
t5_attn_mask = tokens[2] if len(tokens) > 2 else None
# clip_l is None when using T5 only
if clip_l is not None and l_tokens is not None:
l_pooled = clip_l(l_tokens.to(clip_l.device))["pooler_output"]
else:
l_pooled = None
# t5xxl is None when using CLIP only
if t5xxl is not None and t5_tokens is not None:
# t5_out is [b, max length, 4096]
attention_mask = None if not apply_t5_attn_mask else t5_attn_mask.to(t5xxl.device)
t5_out, _ = t5xxl(t5_tokens.to(t5xxl.device), attention_mask, return_dict=False, output_hidden_states=True)
# if zero_pad_t5_output:
# t5_out = t5_out * t5_attn_mask.to(t5_out.device).unsqueeze(-1)
txt_ids = torch.zeros(t5_out.shape[0], t5_out.shape[1], 3, device=t5_out.device)
else:
t5_out = None
txt_ids = None
t5_attn_mask = None # caption may be dropped/shuffled, so t5_attn_mask should not be used to make sure the mask is same as the cached one
return [l_pooled, t5_out, txt_ids, t5_attn_mask] # returns t5_attn_mask for attention mask in transformer
class FluxTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_flux_te.npz"
def __init__(
self,
cache_to_disk: bool,
batch_size: int,
skip_disk_cache_validity_check: bool,
is_partial: bool = False,
apply_t5_attn_mask: bool = False,
) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial)
self.apply_t5_attn_mask = apply_t5_attn_mask
self.warn_fp8_weights = False
def get_outputs_npz_path(self, image_abs_path: str) -> str:
return os.path.splitext(image_abs_path)[0] + FluxTextEncoderOutputsCachingStrategy.FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX
def is_disk_cached_outputs_expected(self, npz_path: str):
if not self.cache_to_disk:
return False
if not os.path.exists(npz_path):
return False
if self.skip_disk_cache_validity_check:
return True
try:
npz = np.load(npz_path)
if "l_pooled" not in npz:
return False
if "t5_out" not in npz:
return False
if "txt_ids" not in npz:
return False
if "t5_attn_mask" not in npz:
return False
if "apply_t5_attn_mask" not in npz:
return False
npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"]
if npz_apply_t5_attn_mask != self.apply_t5_attn_mask:
return False
except Exception as e:
logger.error(f"Error loading file: {npz_path}")
raise e
return True
def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
data = np.load(npz_path)
l_pooled = data["l_pooled"]
t5_out = data["t5_out"]
txt_ids = data["txt_ids"]
t5_attn_mask = data["t5_attn_mask"]
# apply_t5_attn_mask should be same as self.apply_t5_attn_mask
return [l_pooled, t5_out, txt_ids, t5_attn_mask]
def cache_batch_outputs(
self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
):
if not self.warn_fp8_weights:
if flux_utils.get_t5xxl_actual_dtype(models[1]) == torch.float8_e4m3fn:
logger.warning(
"T5 model is using fp8 weights for caching. This may affect the quality of the cached outputs."
" / T5モデルはfp8の重みを使用しています。これはキャッシュの品質に影響を与える可能性があります。"
)
self.warn_fp8_weights = True
flux_text_encoding_strategy: FluxTextEncodingStrategy = text_encoding_strategy
captions = [info.caption for info in infos]
tokens_and_masks = tokenize_strategy.tokenize(captions)
with torch.no_grad():
# attn_mask is applied in text_encoding_strategy.encode_tokens if apply_t5_attn_mask is True
l_pooled, t5_out, txt_ids, _ = flux_text_encoding_strategy.encode_tokens(tokenize_strategy, models, tokens_and_masks)
if l_pooled.dtype == torch.bfloat16:
l_pooled = l_pooled.float()
if t5_out.dtype == torch.bfloat16:
t5_out = t5_out.float()
if txt_ids.dtype == torch.bfloat16:
txt_ids = txt_ids.float()
l_pooled = l_pooled.cpu().numpy()
t5_out = t5_out.cpu().numpy()
txt_ids = txt_ids.cpu().numpy()
t5_attn_mask = tokens_and_masks[2].cpu().numpy()
for i, info in enumerate(infos):
l_pooled_i = l_pooled[i]
t5_out_i = t5_out[i]
txt_ids_i = txt_ids[i]
t5_attn_mask_i = t5_attn_mask[i]
apply_t5_attn_mask_i = self.apply_t5_attn_mask
if self.cache_to_disk:
np.savez(
info.text_encoder_outputs_npz,
l_pooled=l_pooled_i,
t5_out=t5_out_i,
txt_ids=txt_ids_i,
t5_attn_mask=t5_attn_mask_i,
apply_t5_attn_mask=apply_t5_attn_mask_i,
)
else:
# it's fine that attn mask is not None. it's overwritten before calling the model if necessary
info.text_encoder_outputs = (l_pooled_i, t5_out_i, txt_ids_i, t5_attn_mask_i)
class FluxLatentsCachingStrategy(LatentsCachingStrategy):
FLUX_LATENTS_NPZ_SUFFIX = "_flux.npz"
def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check)
@property
def cache_suffix(self) -> str:
return FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX
def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
return (
os.path.splitext(absolute_path)[0]
+ f"_{image_size[0]:04d}x{image_size[1]:04d}"
+ FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX
)
def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool):
return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True)
def load_latents_from_disk(
self, npz_path: str, bucket_reso: Tuple[int, int]
) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
return self._default_load_latents_from_disk(8, npz_path, bucket_reso) # support multi-resolution
# TODO remove circular dependency for ImageInfo
def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu")
vae_device = vae.device
vae_dtype = vae.dtype
self._default_cache_batch_latents(
encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True
)
if not train_util.HIGH_VRAM:
train_util.clean_memory_on_device(vae.device)
if __name__ == "__main__":
# test code for FluxTokenizeStrategy
# tokenizer = sd3_models.SD3Tokenizer()
strategy = FluxTokenizeStrategy(256)
text = "hello world"
l_tokens, g_tokens, t5_tokens = strategy.tokenize(text)
# print(l_tokens.shape)
print(l_tokens)
print(g_tokens)
print(t5_tokens)
texts = ["hello world", "the quick brown fox jumps over the lazy dog"]
l_tokens_2 = strategy.clip_l(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
g_tokens_2 = strategy.clip_g(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
t5_tokens_2 = strategy.t5xxl(
texts, max_length=strategy.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt"
)
print(l_tokens_2)
print(g_tokens_2)
print(t5_tokens_2)
# compare
print(torch.allclose(l_tokens, l_tokens_2["input_ids"][0]))
print(torch.allclose(g_tokens, g_tokens_2["input_ids"][0]))
print(torch.allclose(t5_tokens, t5_tokens_2["input_ids"][0]))
text = ",".join(["hello world! this is long text"] * 50)
l_tokens, g_tokens, t5_tokens = strategy.tokenize(text)
print(l_tokens)
print(g_tokens)
print(t5_tokens)
print(f"model max length l: {strategy.clip_l.model_max_length}")
print(f"model max length g: {strategy.clip_g.model_max_length}")
print(f"model max length t5: {strategy.t5xxl.model_max_length}")