File size: 11,274 Bytes
c1bc1cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os
import glob
from typing import Any, List, Optional, Tuple, Union
import torch
import numpy as np
from transformers import CLIPTokenizer, T5TokenizerFast

from library import flux_utils, train_util
from library.strategy_base import LatentsCachingStrategy, TextEncodingStrategy, TokenizeStrategy, TextEncoderOutputsCachingStrategy

from library.utils import setup_logging

setup_logging()
import logging

logger = logging.getLogger(__name__)


CLIP_L_TOKENIZER_ID = "openai/clip-vit-large-patch14"
T5_XXL_TOKENIZER_ID = "google/t5-v1_1-xxl"


class FluxTokenizeStrategy(TokenizeStrategy):
    def __init__(self, t5xxl_max_length: int = 512, tokenizer_cache_dir: Optional[str] = None) -> None:
        self.t5xxl_max_length = t5xxl_max_length
        self.clip_l = self._load_tokenizer(CLIPTokenizer, CLIP_L_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)
        self.t5xxl = self._load_tokenizer(T5TokenizerFast, T5_XXL_TOKENIZER_ID, tokenizer_cache_dir=tokenizer_cache_dir)

    def tokenize(self, text: Union[str, List[str]]) -> List[torch.Tensor]:
        text = [text] if isinstance(text, str) else text

        l_tokens = self.clip_l(text, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
        t5_tokens = self.t5xxl(text, max_length=self.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt")

        t5_attn_mask = t5_tokens["attention_mask"]
        l_tokens = l_tokens["input_ids"]
        t5_tokens = t5_tokens["input_ids"]

        return [l_tokens, t5_tokens, t5_attn_mask]


class FluxTextEncodingStrategy(TextEncodingStrategy):
    def __init__(self, apply_t5_attn_mask: Optional[bool] = None) -> None:
        """
        Args:
            apply_t5_attn_mask: Default value for apply_t5_attn_mask.
        """
        self.apply_t5_attn_mask = apply_t5_attn_mask

    def encode_tokens(
        self,
        tokenize_strategy: TokenizeStrategy,
        models: List[Any],
        tokens: List[torch.Tensor],
        apply_t5_attn_mask: Optional[bool] = None,
    ) -> List[torch.Tensor]:
        # supports single model inference

        if apply_t5_attn_mask is None:
            apply_t5_attn_mask = self.apply_t5_attn_mask

        clip_l, t5xxl = models if len(models) == 2 else (models[0], None)
        l_tokens, t5_tokens = tokens[:2]
        t5_attn_mask = tokens[2] if len(tokens) > 2 else None

        # clip_l is None when using T5 only
        if clip_l is not None and l_tokens is not None:
            l_pooled = clip_l(l_tokens.to(clip_l.device))["pooler_output"]
        else:
            l_pooled = None

        # t5xxl is None when using CLIP only
        if t5xxl is not None and t5_tokens is not None:
            # t5_out is [b, max length, 4096]
            attention_mask = None if not apply_t5_attn_mask else t5_attn_mask.to(t5xxl.device)
            t5_out, _ = t5xxl(t5_tokens.to(t5xxl.device), attention_mask, return_dict=False, output_hidden_states=True)
            # if zero_pad_t5_output:
            #     t5_out = t5_out * t5_attn_mask.to(t5_out.device).unsqueeze(-1)
            txt_ids = torch.zeros(t5_out.shape[0], t5_out.shape[1], 3, device=t5_out.device)
        else:
            t5_out = None
            txt_ids = None
            t5_attn_mask = None  # caption may be dropped/shuffled, so t5_attn_mask should not be used to make sure the mask is same as the cached one

        return [l_pooled, t5_out, txt_ids, t5_attn_mask]  # returns t5_attn_mask for attention mask in transformer


class FluxTextEncoderOutputsCachingStrategy(TextEncoderOutputsCachingStrategy):
    FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX = "_flux_te.npz"

    def __init__(
        self,
        cache_to_disk: bool,
        batch_size: int,
        skip_disk_cache_validity_check: bool,
        is_partial: bool = False,
        apply_t5_attn_mask: bool = False,
    ) -> None:
        super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check, is_partial)
        self.apply_t5_attn_mask = apply_t5_attn_mask

        self.warn_fp8_weights = False

    def get_outputs_npz_path(self, image_abs_path: str) -> str:
        return os.path.splitext(image_abs_path)[0] + FluxTextEncoderOutputsCachingStrategy.FLUX_TEXT_ENCODER_OUTPUTS_NPZ_SUFFIX

    def is_disk_cached_outputs_expected(self, npz_path: str):
        if not self.cache_to_disk:
            return False
        if not os.path.exists(npz_path):
            return False
        if self.skip_disk_cache_validity_check:
            return True

        try:
            npz = np.load(npz_path)
            if "l_pooled" not in npz:
                return False
            if "t5_out" not in npz:
                return False
            if "txt_ids" not in npz:
                return False
            if "t5_attn_mask" not in npz:
                return False
            if "apply_t5_attn_mask" not in npz:
                return False
            npz_apply_t5_attn_mask = npz["apply_t5_attn_mask"]
            if npz_apply_t5_attn_mask != self.apply_t5_attn_mask:
                return False
        except Exception as e:
            logger.error(f"Error loading file: {npz_path}")
            raise e

        return True

    def load_outputs_npz(self, npz_path: str) -> List[np.ndarray]:
        data = np.load(npz_path)
        l_pooled = data["l_pooled"]
        t5_out = data["t5_out"]
        txt_ids = data["txt_ids"]
        t5_attn_mask = data["t5_attn_mask"]
        # apply_t5_attn_mask should be same as self.apply_t5_attn_mask
        return [l_pooled, t5_out, txt_ids, t5_attn_mask]

    def cache_batch_outputs(
        self, tokenize_strategy: TokenizeStrategy, models: List[Any], text_encoding_strategy: TextEncodingStrategy, infos: List
    ):
        if not self.warn_fp8_weights:
            if flux_utils.get_t5xxl_actual_dtype(models[1]) == torch.float8_e4m3fn:
                logger.warning(
                    "T5 model is using fp8 weights for caching. This may affect the quality of the cached outputs."
                    " / T5モデルはfp8の重みを使用しています。これはキャッシュの品質に影響を与える可能性があります。"
                )
            self.warn_fp8_weights = True

        flux_text_encoding_strategy: FluxTextEncodingStrategy = text_encoding_strategy
        captions = [info.caption for info in infos]

        tokens_and_masks = tokenize_strategy.tokenize(captions)
        with torch.no_grad():
            # attn_mask is applied in text_encoding_strategy.encode_tokens if apply_t5_attn_mask is True
            l_pooled, t5_out, txt_ids, _ = flux_text_encoding_strategy.encode_tokens(tokenize_strategy, models, tokens_and_masks)

        if l_pooled.dtype == torch.bfloat16:
            l_pooled = l_pooled.float()
        if t5_out.dtype == torch.bfloat16:
            t5_out = t5_out.float()
        if txt_ids.dtype == torch.bfloat16:
            txt_ids = txt_ids.float()

        l_pooled = l_pooled.cpu().numpy()
        t5_out = t5_out.cpu().numpy()
        txt_ids = txt_ids.cpu().numpy()
        t5_attn_mask = tokens_and_masks[2].cpu().numpy()

        for i, info in enumerate(infos):
            l_pooled_i = l_pooled[i]
            t5_out_i = t5_out[i]
            txt_ids_i = txt_ids[i]
            t5_attn_mask_i = t5_attn_mask[i]
            apply_t5_attn_mask_i = self.apply_t5_attn_mask

            if self.cache_to_disk:
                np.savez(
                    info.text_encoder_outputs_npz,
                    l_pooled=l_pooled_i,
                    t5_out=t5_out_i,
                    txt_ids=txt_ids_i,
                    t5_attn_mask=t5_attn_mask_i,
                    apply_t5_attn_mask=apply_t5_attn_mask_i,
                )
            else:
                # it's fine that attn mask is not None. it's overwritten before calling the model if necessary
                info.text_encoder_outputs = (l_pooled_i, t5_out_i, txt_ids_i, t5_attn_mask_i)


class FluxLatentsCachingStrategy(LatentsCachingStrategy):
    FLUX_LATENTS_NPZ_SUFFIX = "_flux.npz"

    def __init__(self, cache_to_disk: bool, batch_size: int, skip_disk_cache_validity_check: bool) -> None:
        super().__init__(cache_to_disk, batch_size, skip_disk_cache_validity_check)

    @property
    def cache_suffix(self) -> str:
        return FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX

    def get_latents_npz_path(self, absolute_path: str, image_size: Tuple[int, int]) -> str:
        return (
            os.path.splitext(absolute_path)[0]
            + f"_{image_size[0]:04d}x{image_size[1]:04d}"
            + FluxLatentsCachingStrategy.FLUX_LATENTS_NPZ_SUFFIX
        )

    def is_disk_cached_latents_expected(self, bucket_reso: Tuple[int, int], npz_path: str, flip_aug: bool, alpha_mask: bool):
        return self._default_is_disk_cached_latents_expected(8, bucket_reso, npz_path, flip_aug, alpha_mask, multi_resolution=True)

    def load_latents_from_disk(
        self, npz_path: str, bucket_reso: Tuple[int, int]
    ) -> Tuple[Optional[np.ndarray], Optional[List[int]], Optional[List[int]], Optional[np.ndarray], Optional[np.ndarray]]:
        return self._default_load_latents_from_disk(8, npz_path, bucket_reso)  # support multi-resolution

    # TODO remove circular dependency for ImageInfo
    def cache_batch_latents(self, vae, image_infos: List, flip_aug: bool, alpha_mask: bool, random_crop: bool):
        encode_by_vae = lambda img_tensor: vae.encode(img_tensor).to("cpu")
        vae_device = vae.device
        vae_dtype = vae.dtype

        self._default_cache_batch_latents(
            encode_by_vae, vae_device, vae_dtype, image_infos, flip_aug, alpha_mask, random_crop, multi_resolution=True
        )

        if not train_util.HIGH_VRAM:
            train_util.clean_memory_on_device(vae.device)


if __name__ == "__main__":
    # test code for FluxTokenizeStrategy
    # tokenizer = sd3_models.SD3Tokenizer()
    strategy = FluxTokenizeStrategy(256)
    text = "hello world"

    l_tokens, g_tokens, t5_tokens = strategy.tokenize(text)
    # print(l_tokens.shape)
    print(l_tokens)
    print(g_tokens)
    print(t5_tokens)

    texts = ["hello world", "the quick brown fox jumps over the lazy dog"]
    l_tokens_2 = strategy.clip_l(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
    g_tokens_2 = strategy.clip_g(texts, max_length=77, padding="max_length", truncation=True, return_tensors="pt")
    t5_tokens_2 = strategy.t5xxl(
        texts, max_length=strategy.t5xxl_max_length, padding="max_length", truncation=True, return_tensors="pt"
    )
    print(l_tokens_2)
    print(g_tokens_2)
    print(t5_tokens_2)

    # compare
    print(torch.allclose(l_tokens, l_tokens_2["input_ids"][0]))
    print(torch.allclose(g_tokens, g_tokens_2["input_ids"][0]))
    print(torch.allclose(t5_tokens, t5_tokens_2["input_ids"][0]))

    text = ",".join(["hello world! this is long text"] * 50)
    l_tokens, g_tokens, t5_tokens = strategy.tokenize(text)
    print(l_tokens)
    print(g_tokens)
    print(t5_tokens)

    print(f"model max length l: {strategy.clip_l.model_max_length}")
    print(f"model max length g: {strategy.clip_g.model_max_length}")
    print(f"model max length t5: {strategy.t5xxl.model_max_length}")