Spaces:
Sleeping
Sleeping
File size: 10,171 Bytes
48d3a70 f611314 bb35a51 f611314 bb35a51 723c997 f611314 723c997 f611314 2867bc8 f611314 2867bc8 f611314 723c997 f611314 54507dc fab2b8a f611314 2d7003c f611314 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 723c997 bb35a51 3f17ce4 723c997 bb35a51 723c997 f611314 3f17ce4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import spaces
import numpy as np
from PIL import Image
import gradio as gr
import open3d as o3d
import trimesh
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler
import torch
from collections import Counter
import random
from controlnet_aux import OpenposeDetector
ratios_map = {
0.5:{"width":704,"height":1408},
0.57:{"width":768,"height":1344},
0.68:{"width":832,"height":1216},
0.72:{"width":832,"height":1152},
0.78:{"width":896,"height":1152},
0.82:{"width":896,"height":1088},
0.88:{"width":960,"height":1088},
0.94:{"width":960,"height":1024},
1.00:{"width":1024,"height":1024},
1.13:{"width":1088,"height":960},
1.21:{"width":1088,"height":896},
1.29:{"width":1152,"height":896},
1.38:{"width":1152,"height":832},
1.46:{"width":1216,"height":832},
1.67:{"width":1280,"height":768},
1.75:{"width":1344,"height":768},
2.00:{"width":1408,"height":704}
}
ratios = np.array(list(ratios_map.keys()))
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
controlnet = ControlNetModel.from_pretrained(
"yeq6x/Image2PositionColor_v3",
torch_dtype=torch.float16
).to('cuda')
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
"yeq6x/animagine_position_map",
controlnet=controlnet,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
offload_state_dict=True,
).to('cuda').to(torch.float16)
# pipe.scheduler = EulerAncestralDiscreteScheduler(
# beta_start=0.00085,
# beta_end=0.012,
# beta_schedule="scaled_linear",
# num_train_timesteps=1000,
# steps_offset=1
# )
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.force_zeros_for_empty_prompt = False
def get_size(init_image):
w,h=init_image.size
curr_ratio = w/h
ind = np.argmin(np.abs(curr_ratio-ratios))
ratio = ratios[ind]
chosen_ratio = ratios_map[ratio]
w,h = chosen_ratio['width'], chosen_ratio['height']
return w,h
def resize_image(image):
image = image.convert('RGB')
w,h = get_size(image)
resized_image = image.resize((w, h))
return resized_image
@spaces.GPU
def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed):
generator = torch.Generator("cuda").manual_seed(seed)
images = pipe(
prompt, negative_prompt=negative_prompt, image=pose_image, num_inference_steps=num_steps, controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator, height=input_image.size[1], width=input_image.size[0],
).images
return images
@spaces.GPU
def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed):
# resize input_image to 1024x1024
input_image = resize_image(input_image)
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed)
return [pose_image,images[0]]
# @spaces.GPU
# def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
# print("predict position map")
# global pipe
# generator = torch.Generator()
# generator.manual_seed(random.randint(0, 2147483647))
# image = pipe(
# prompt,
# negative_prompt=negative_prompt,
# image = cond_image,
# width=1024,
# height=1024,
# guidance_scale=8,
# num_inference_steps=20,
# generator=generator,
# guess_mode = True,
# controlnet_conditioning_scale = controlnet_conditioning_scale
# ).images[0]
# return image
# def convert_pil_to_opencv(pil_image):
# return np.array(pil_image)
# def inv_func(y,
# c = -712.380100,
# a = 137.375240,
# b = 192.435866):
# return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
# def create_point_cloud(img1, img2):
# if img1.shape != img2.shape:
# raise ValueError("Both images must have the same dimensions.")
# h, w, _ = img1.shape
# points = []
# colors = []
# for y in range(h):
# for x in range(w):
# # ピクセル位置 (x, y) のRGBをXYZとして取得
# r, g, b = img1[y, x]
# r = inv_func(r) * 0.9
# g = inv_func(g) / 1.7 * 0.6
# b = inv_func(b)
# r *= 150
# g *= 150
# b *= 150
# points.append([g, b, r]) # X, Y, Z
# # 対応するピクセル位置の画像2の色を取得
# colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
# return np.array(points), np.array(colors)
# def point_cloud_to_glb(points, colors):
# # Open3Dでポイントクラウドを作成
# pc = o3d.geometry.PointCloud()
# pc.points = o3d.utility.Vector3dVector(points)
# pc.colors = o3d.utility.Vector3dVector(colors)
# # 一時的にPLY形式で保存
# temp_ply_file = "temp_output.ply"
# o3d.io.write_point_cloud(temp_ply_file, pc)
# # PLYをGLBに変換
# mesh = trimesh.load(temp_ply_file)
# glb_file = "output.glb"
# mesh.export(glb_file)
# return glb_file
# def visualize_3d(image1, image2):
# print("Processing...")
# # PIL画像をOpenCV形式に変換
# img1 = convert_pil_to_opencv(image1)
# img2 = convert_pil_to_opencv(image2)
# # ポイントクラウド生成
# points, colors = create_point_cloud(img1, img2)
# # GLB形式に変換
# glb_file = point_cloud_to_glb(points, colors)
# return glb_file
# def scale_image(original_image):
# aspect_ratio = original_image.width / original_image.height
# if original_image.width > original_image.height:
# new_width = 1024
# new_height = round(new_width / aspect_ratio)
# else:
# new_height = 1024
# new_width = round(new_height * aspect_ratio)
# resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
# return resized_original
# def get_edge_mode_color(img, edge_width=10):
# # 外周の10ピクセル領域を取得
# left = img.crop((0, 0, edge_width, img.height)) # 左端
# right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
# top = img.crop((0, 0, img.width, edge_width)) # 上端
# bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
# # 各領域のピクセルデータを取得して結合
# colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
# # 最頻値(mode)を計算
# mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
# return mode_color
# def paste_image(resized_img):
# # 外周10pxの最頻値を背景色に設定
# mode_color = get_edge_mode_color(resized_img, edge_width=10)
# mode_background = Image.new("RGBA", (1024, 1024), mode_color)
# mode_background = mode_background.convert('RGB')
# x = (1024 - resized_img.width) // 2
# y = (1024 - resized_img.height) // 2
# mode_background.paste(resized_img, (x, y))
# return mode_background
# def outpaint_image(image):
# if type(image) == type(None):
# return None
# resized_img = scale_image(image)
# image = paste_image(resized_img)
# return image
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
prompt = gr.Textbox(label="Prompt")
negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
run_button = gr.Button(value="Run")
with gr.Column():
with gr.Row():
pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output])
# gr.Markdown("## Position Map Visualizer")
# with gr.Row():
# with gr.Column():
# with gr.Row():
# img1 = gr.Image(type="pil", label="color Image", height=300)
# img2 = gr.Image(type="pil", label="map Image", height=300)
# prompt = gr.Textbox("position map, 1girl, white background", label="Prompt")
# negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt")
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=0.6, step=0.05)
# predict_map_btn = gr.Button("Predict Position Map")
# visualize_3d_btn = gr.Button("Generate 3D Point Cloud")
# with gr.Column():
# reconstruction_output = gr.Model3D(label="3D Viewer", height=600)
# gr.Examples(
# examples=[
# ["resources/source/000006.png", "resources/target/000006.png"],
# ["resources/source/006420.png", "resources/target/006420.png"],
# ],
# inputs=[img1, img2]
# )
# img1.input(outpaint_image, inputs=img1, outputs=img1)
# predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt, controlnet_conditioning_scale], outputs=img2)
# visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output)
block.launch(debug = True)
|