Spaces:
Sleeping
Sleeping
de
Browse files
app.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
import spaces
|
2 |
-
from diffusers import ControlNetModel
|
3 |
-
from diffusers import StableDiffusionXLControlNetPipeline
|
4 |
-
from diffusers import EulerAncestralDiscreteScheduler
|
5 |
-
from PIL import Image
|
6 |
-
import torch
|
7 |
import numpy as np
|
8 |
-
import
|
9 |
import gradio as gr
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
|
13 |
ratios_map = {
|
14 |
0.5:{"width":704,"height":1408},
|
@@ -31,9 +30,6 @@ ratios_map = {
|
|
31 |
}
|
32 |
ratios = np.array(list(ratios_map.keys()))
|
33 |
|
34 |
-
|
35 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
36 |
-
|
37 |
controlnet = ControlNetModel.from_pretrained(
|
38 |
"yeq6x/Image2PositionColor_v3",
|
39 |
torch_dtype=torch.float16
|
@@ -54,8 +50,6 @@ pipe.scheduler = EulerAncestralDiscreteScheduler(
|
|
54 |
num_train_timesteps=1000,
|
55 |
steps_offset=1
|
56 |
)
|
57 |
-
# pipe.enable_freeu(b1=1.1, b2=1.1, s1=0.5, s2=0.7)
|
58 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
59 |
pipe.force_zeros_for_empty_prompt = False
|
60 |
|
61 |
def get_size(init_image):
|
@@ -72,17 +66,6 @@ def resize_image(image):
|
|
72 |
w,h = get_size(image)
|
73 |
resized_image = image.resize((w, h))
|
74 |
return resized_image
|
75 |
-
|
76 |
-
def resize_image_old(image):
|
77 |
-
image = image.convert('RGB')
|
78 |
-
current_size = image.size
|
79 |
-
if current_size[0] > current_size[1]:
|
80 |
-
center_cropped_image = transforms.functional.center_crop(image, (current_size[1], current_size[1]))
|
81 |
-
else:
|
82 |
-
center_cropped_image = transforms.functional.center_crop(image, (current_size[0], current_size[0]))
|
83 |
-
resized_image = transforms.functional.resize(center_cropped_image, (1024, 1024))
|
84 |
-
return resized_image
|
85 |
-
|
86 |
|
87 |
@spaces.GPU
|
88 |
def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed):
|
@@ -99,40 +82,193 @@ def process(input_image, prompt, negative_prompt, num_steps, controlnet_conditio
|
|
99 |
# resize input_image to 1024x1024
|
100 |
input_image = resize_image(input_image)
|
101 |
|
102 |
-
pose_image = openpose(input_image, include_body=True, include_hand=True, include_face=True)
|
103 |
-
|
104 |
images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed)
|
105 |
|
106 |
return [pose_image,images[0]]
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
|
|
|
|
|
|
137 |
|
138 |
-
|
|
|
1 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
import gradio as gr
|
5 |
+
import open3d as o3d
|
6 |
+
import trimesh
|
7 |
+
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, EulerAncestralDiscreteScheduler
|
8 |
+
import torch
|
9 |
+
from collections import Counter
|
10 |
+
import random
|
11 |
|
12 |
ratios_map = {
|
13 |
0.5:{"width":704,"height":1408},
|
|
|
30 |
}
|
31 |
ratios = np.array(list(ratios_map.keys()))
|
32 |
|
|
|
|
|
|
|
33 |
controlnet = ControlNetModel.from_pretrained(
|
34 |
"yeq6x/Image2PositionColor_v3",
|
35 |
torch_dtype=torch.float16
|
|
|
50 |
num_train_timesteps=1000,
|
51 |
steps_offset=1
|
52 |
)
|
|
|
|
|
53 |
pipe.force_zeros_for_empty_prompt = False
|
54 |
|
55 |
def get_size(init_image):
|
|
|
66 |
w,h = get_size(image)
|
67 |
resized_image = image.resize((w, h))
|
68 |
return resized_image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
@spaces.GPU
|
71 |
def generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed):
|
|
|
82 |
# resize input_image to 1024x1024
|
83 |
input_image = resize_image(input_image)
|
84 |
|
|
|
|
|
85 |
images = generate_(prompt, negative_prompt, pose_image, input_image, num_steps, controlnet_conditioning_scale, seed)
|
86 |
|
87 |
return [pose_image,images[0]]
|
88 |
+
|
89 |
+
@spaces.GPU
|
90 |
+
def predict_image(cond_image, prompt, negative_prompt, controlnet_conditioning_scale):
|
91 |
+
print("predict position map")
|
92 |
+
global pipe
|
93 |
+
generator = torch.Generator()
|
94 |
+
generator.manual_seed(random.randint(0, 2147483647))
|
95 |
+
image = pipe(
|
96 |
+
prompt,
|
97 |
+
negative_prompt=negative_prompt,
|
98 |
+
image = cond_image,
|
99 |
+
width=1024,
|
100 |
+
height=1024,
|
101 |
+
guidance_scale=8,
|
102 |
+
num_inference_steps=20,
|
103 |
+
generator=generator,
|
104 |
+
guess_mode = True,
|
105 |
+
controlnet_conditioning_scale = controlnet_conditioning_scale
|
106 |
+
).images[0]
|
107 |
+
|
108 |
+
return image
|
109 |
+
|
110 |
+
# block = gr.Blocks().queue()
|
111 |
+
|
112 |
+
# with block:
|
113 |
+
# with gr.Row():
|
114 |
+
# with gr.Column():
|
115 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
116 |
+
# prompt = gr.Textbox(label="Prompt")
|
117 |
+
# negative_prompt = gr.Textbox(label="Negative prompt", value="Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers")
|
118 |
+
# num_steps = gr.Slider(label="Number of steps", minimum=25, maximum=100, value=50, step=1)
|
119 |
+
# controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=1.0, step=0.05)
|
120 |
+
# seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True,)
|
121 |
+
# run_button = gr.Button(value="Run")
|
122 |
|
123 |
+
# with gr.Column():
|
124 |
+
# with gr.Row():
|
125 |
+
# pose_image_output = gr.Image(label="Pose Image", type="pil", interactive=False)
|
126 |
+
# generated_image_output = gr.Image(label="Generated Image", type="pil", interactive=False)
|
127 |
+
|
128 |
+
# ips = [input_image, prompt, negative_prompt, num_steps, controlnet_conditioning_scale, seed]
|
129 |
+
# run_button.click(fn=process, inputs=ips, outputs=[pose_image_output, generated_image_output])
|
130 |
+
|
131 |
+
|
132 |
+
# block.launch(debug = True)
|
133 |
+
|
134 |
+
def convert_pil_to_opencv(pil_image):
|
135 |
+
return np.array(pil_image)
|
136 |
+
|
137 |
+
def inv_func(y,
|
138 |
+
c = -712.380100,
|
139 |
+
a = 137.375240,
|
140 |
+
b = 192.435866):
|
141 |
+
return (np.exp((y - c) / a) - np.exp(-c/a)) / 964.8468371292845
|
142 |
+
|
143 |
+
def create_point_cloud(img1, img2):
|
144 |
+
if img1.shape != img2.shape:
|
145 |
+
raise ValueError("Both images must have the same dimensions.")
|
146 |
+
|
147 |
+
h, w, _ = img1.shape
|
148 |
+
points = []
|
149 |
+
colors = []
|
150 |
+
for y in range(h):
|
151 |
+
for x in range(w):
|
152 |
+
# ピクセル位置 (x, y) のRGBをXYZとして取得
|
153 |
+
r, g, b = img1[y, x]
|
154 |
+
r = inv_func(r) * 0.9
|
155 |
+
g = inv_func(g) / 1.7 * 0.6
|
156 |
+
b = inv_func(b)
|
157 |
+
r *= 150
|
158 |
+
g *= 150
|
159 |
+
b *= 150
|
160 |
+
points.append([g, b, r]) # X, Y, Z
|
161 |
+
# 対応するピクセル位置の画像2の色を取得
|
162 |
+
colors.append(img2[y, x] / 255.0) # 色は0〜1にスケール
|
163 |
|
164 |
+
return np.array(points), np.array(colors)
|
165 |
+
|
166 |
+
def point_cloud_to_glb(points, colors):
|
167 |
+
# Open3Dでポイントクラウドを作成
|
168 |
+
pc = o3d.geometry.PointCloud()
|
169 |
+
pc.points = o3d.utility.Vector3dVector(points)
|
170 |
+
pc.colors = o3d.utility.Vector3dVector(colors)
|
171 |
+
|
172 |
+
# 一時的にPLY形式で保存
|
173 |
+
temp_ply_file = "temp_output.ply"
|
174 |
+
o3d.io.write_point_cloud(temp_ply_file, pc)
|
175 |
+
|
176 |
+
# PLYをGLBに変換
|
177 |
+
mesh = trimesh.load(temp_ply_file)
|
178 |
+
glb_file = "output.glb"
|
179 |
+
mesh.export(glb_file)
|
180 |
+
|
181 |
+
return glb_file
|
182 |
+
|
183 |
+
def visualize_3d(image1, image2):
|
184 |
+
print("Processing...")
|
185 |
+
# PIL画像をOpenCV形式に変換
|
186 |
+
img1 = convert_pil_to_opencv(image1)
|
187 |
+
img2 = convert_pil_to_opencv(image2)
|
188 |
+
|
189 |
+
# ポイントクラウド生成
|
190 |
+
points, colors = create_point_cloud(img1, img2)
|
191 |
+
|
192 |
+
# GLB形式に変換
|
193 |
+
glb_file = point_cloud_to_glb(points, colors)
|
194 |
+
|
195 |
+
return glb_file
|
196 |
+
|
197 |
+
def scale_image(original_image):
|
198 |
+
aspect_ratio = original_image.width / original_image.height
|
199 |
+
|
200 |
+
if original_image.width > original_image.height:
|
201 |
+
new_width = 1024
|
202 |
+
new_height = round(new_width / aspect_ratio)
|
203 |
+
else:
|
204 |
+
new_height = 1024
|
205 |
+
new_width = round(new_height * aspect_ratio)
|
206 |
+
|
207 |
+
resized_original = original_image.resize((new_width, new_height), Image.LANCZOS)
|
208 |
+
|
209 |
+
return resized_original
|
210 |
+
|
211 |
+
def get_edge_mode_color(img, edge_width=10):
|
212 |
+
# 外周の10ピクセル領域を取得
|
213 |
+
left = img.crop((0, 0, edge_width, img.height)) # 左端
|
214 |
+
right = img.crop((img.width - edge_width, 0, img.width, img.height)) # 右端
|
215 |
+
top = img.crop((0, 0, img.width, edge_width)) # 上端
|
216 |
+
bottom = img.crop((0, img.height - edge_width, img.width, img.height)) # 下端
|
217 |
+
|
218 |
+
# 各領域のピクセルデータを取得して結合
|
219 |
+
colors = list(left.getdata()) + list(right.getdata()) + list(top.getdata()) + list(bottom.getdata())
|
220 |
+
|
221 |
+
# 最頻値(mode)を計算
|
222 |
+
mode_color = Counter(colors).most_common(1)[0][0] # 最も頻繁に出現する色を取得
|
223 |
+
|
224 |
+
return mode_color
|
225 |
+
|
226 |
+
def paste_image(resized_img):
|
227 |
+
# 外周10pxの最頻値を背景色に設定
|
228 |
+
mode_color = get_edge_mode_color(resized_img, edge_width=10)
|
229 |
+
mode_background = Image.new("RGBA", (1024, 1024), mode_color)
|
230 |
+
mode_background = mode_background.convert('RGB')
|
231 |
+
|
232 |
+
x = (1024 - resized_img.width) // 2
|
233 |
+
y = (1024 - resized_img.height) // 2
|
234 |
+
mode_background.paste(resized_img, (x, y))
|
235 |
+
|
236 |
+
return mode_background
|
237 |
+
|
238 |
+
def outpaint_image(image):
|
239 |
+
if type(image) == type(None):
|
240 |
+
return None
|
241 |
+
resized_img = scale_image(image)
|
242 |
+
image = paste_image(resized_img)
|
243 |
+
|
244 |
+
return image
|
245 |
+
|
246 |
+
# Gradioアプリケーション
|
247 |
+
with gr.Blocks() as demo:
|
248 |
+
gr.Markdown("## Position Map Visualizer")
|
249 |
+
|
250 |
+
with gr.Row():
|
251 |
+
with gr.Column():
|
252 |
+
with gr.Row():
|
253 |
+
img1 = gr.Image(type="pil", label="color Image", height=300)
|
254 |
+
img2 = gr.Image(type="pil", label="map Image", height=300)
|
255 |
+
prompt = gr.Textbox("position map, 1girl, white background", label="Prompt")
|
256 |
+
negative_prompt = gr.Textbox("lowres, bad anatomy, bad hands, bad feet, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry", label="Negative Prompt")
|
257 |
+
controlnet_conditioning_scale = gr.Slider(label="ControlNet conditioning scale", minimum=0.1, maximum=2.0, value=0.6, step=0.05)
|
258 |
+
predict_map_btn = gr.Button("Predict Position Map")
|
259 |
+
visualize_3d_btn = gr.Button("Generate 3D Point Cloud")
|
260 |
+
with gr.Column():
|
261 |
+
reconstruction_output = gr.Model3D(label="3D Viewer", height=600)
|
262 |
+
gr.Examples(
|
263 |
+
examples=[
|
264 |
+
["resources/source/000006.png", "resources/target/000006.png"],
|
265 |
+
["resources/source/006420.png", "resources/target/006420.png"],
|
266 |
+
],
|
267 |
+
inputs=[img1, img2]
|
268 |
+
)
|
269 |
|
270 |
+
img1.input(outpaint_image, inputs=img1, outputs=img1)
|
271 |
+
predict_map_btn.click(predict_image, inputs=[img1, prompt, negative_prompt, controlnet_conditioning_scale], outputs=img2)
|
272 |
+
visualize_3d_btn.click(visualize_3d, inputs=[img2, img1], outputs=reconstruction_output)
|
273 |
|
274 |
+
demo.launch()
|