Spaces:
Runtime error
Runtime error
import os | |
import math | |
import cv2 | |
import numpy as np | |
import onnxruntime | |
from onnxruntime.capi import _pybind_state as C | |
__labels = [ | |
"FEMALE_GENITALIA_COVERED", | |
"FACE_FEMALE", | |
"BUTTOCKS_EXPOSED", | |
"FEMALE_BREAST_EXPOSED", | |
"FEMALE_GENITALIA_EXPOSED", | |
"MALE_BREAST_EXPOSED", | |
"ANUS_EXPOSED", | |
"FEET_EXPOSED", | |
"BELLY_COVERED", | |
"FEET_COVERED", | |
"ARMPITS_COVERED", | |
"ARMPITS_EXPOSED", | |
"FACE_MALE", | |
"BELLY_EXPOSED", | |
"MALE_GENITALIA_EXPOSED", | |
"ANUS_COVERED", | |
"FEMALE_BREAST_COVERED", | |
"BUTTOCKS_COVERED", | |
] | |
def _read_image(image_path, target_size=320): | |
# img = cv2.imread(image_path) | |
# img_height, img_width = img.shape[:2] | |
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
img = image_path # NOTE numpy array (H, W, 3) | |
img_height, img_width = img.shape[:2] | |
aspect = img_width / img_height | |
if img_height > img_width: | |
new_height = target_size | |
new_width = int(round(target_size * aspect)) | |
else: | |
new_width = target_size | |
new_height = int(round(target_size / aspect)) | |
resize_factor = math.sqrt( | |
(img_width**2 + img_height**2) / (new_width**2 + new_height**2) | |
) | |
img = cv2.resize(img, (new_width, new_height)) | |
pad_x = target_size - new_width | |
pad_y = target_size - new_height | |
pad_top, pad_bottom = [int(i) for i in np.floor([pad_y, pad_y]) / 2] | |
pad_left, pad_right = [int(i) for i in np.floor([pad_x, pad_x]) / 2] | |
img = cv2.copyMakeBorder( | |
img, | |
pad_top, | |
pad_bottom, | |
pad_left, | |
pad_right, | |
cv2.BORDER_CONSTANT, | |
value=[0, 0, 0], | |
) | |
img = cv2.resize(img, (target_size, target_size)) | |
image_data = img.astype("float32") / 255.0 # normalize | |
image_data = np.transpose(image_data, (2, 0, 1)) | |
image_data = np.expand_dims(image_data, axis=0) | |
return image_data, resize_factor, pad_left, pad_top | |
def _postprocess(output, resize_factor, pad_left, pad_top): | |
outputs = np.transpose(np.squeeze(output[0])) | |
rows = outputs.shape[0] | |
boxes = [] | |
scores = [] | |
class_ids = [] | |
for i in range(rows): | |
classes_scores = outputs[i][4:] | |
max_score = np.amax(classes_scores) | |
if max_score >= 0.2: | |
class_id = np.argmax(classes_scores) | |
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] | |
left = int(round((x - w * 0.5 - pad_left) * resize_factor)) | |
top = int(round((y - h * 0.5 - pad_top) * resize_factor)) | |
width = int(round(w * resize_factor)) | |
height = int(round(h * resize_factor)) | |
class_ids.append(class_id) | |
scores.append(max_score) | |
boxes.append([left, top, width, height]) | |
indices = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45) | |
detections = [] | |
for i in indices: | |
box = boxes[i] | |
score = scores[i] | |
class_id = class_ids[i] | |
detections.append( | |
{"class": __labels[class_id], "score": float(score), "box": box} | |
) | |
return detections | |
class NudeDetector: | |
def __init__(self, providers=None): | |
self.onnx_session = onnxruntime.InferenceSession( | |
os.path.join(os.path.dirname(__file__), "best.onnx"), | |
providers=C.get_available_providers() if not providers else providers, | |
) | |
model_inputs = self.onnx_session.get_inputs() | |
input_shape = model_inputs[0].shape | |
self.input_width = input_shape[2] # 320 | |
self.input_height = input_shape[3] # 320 | |
self.input_name = model_inputs[0].name | |
def detect(self, image_path): | |
preprocessed_image, resize_factor, pad_left, pad_top = _read_image( | |
image_path, self.input_width | |
) | |
outputs = self.onnx_session.run(None, {self.input_name: preprocessed_image}) | |
detections = _postprocess(outputs, resize_factor, pad_left, pad_top) | |
return detections | |
def censor(self, image_path, classes=[], output_path=None): | |
detections = self.detect(image_path) | |
if classes: | |
detections = [ | |
detection for detection in detections if detection["class"] in classes | |
] | |
img = cv2.imread(image_path) | |
for detection in detections: | |
box = detection["box"] | |
x, y, w, h = box[0], box[1], box[2], box[3] | |
# change these pixels to pure black | |
img[y : y + h, x : x + w] = (0, 0, 0) | |
if not output_path: | |
image_path, ext = os.path.splitext(image_path) | |
output_path = f"{image_path}_censored{ext}" | |
cv2.imwrite(output_path, img) | |
return output_path | |
if __name__ == "__main__": | |
detector = NudeDetector() | |
detections = detector.detect("/Users/praneeth.bedapudi/Desktop/images.jpeg") | |