Spaces:
Runtime error
Runtime error
File size: 4,833 Bytes
04fbff5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
import os
import math
import cv2
import numpy as np
import onnxruntime
from onnxruntime.capi import _pybind_state as C
__labels = [
"FEMALE_GENITALIA_COVERED",
"FACE_FEMALE",
"BUTTOCKS_EXPOSED",
"FEMALE_BREAST_EXPOSED",
"FEMALE_GENITALIA_EXPOSED",
"MALE_BREAST_EXPOSED",
"ANUS_EXPOSED",
"FEET_EXPOSED",
"BELLY_COVERED",
"FEET_COVERED",
"ARMPITS_COVERED",
"ARMPITS_EXPOSED",
"FACE_MALE",
"BELLY_EXPOSED",
"MALE_GENITALIA_EXPOSED",
"ANUS_COVERED",
"FEMALE_BREAST_COVERED",
"BUTTOCKS_COVERED",
]
def _read_image(image_path, target_size=320):
# img = cv2.imread(image_path)
# img_height, img_width = img.shape[:2]
# img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = image_path # NOTE numpy array (H, W, 3)
img_height, img_width = img.shape[:2]
aspect = img_width / img_height
if img_height > img_width:
new_height = target_size
new_width = int(round(target_size * aspect))
else:
new_width = target_size
new_height = int(round(target_size / aspect))
resize_factor = math.sqrt(
(img_width**2 + img_height**2) / (new_width**2 + new_height**2)
)
img = cv2.resize(img, (new_width, new_height))
pad_x = target_size - new_width
pad_y = target_size - new_height
pad_top, pad_bottom = [int(i) for i in np.floor([pad_y, pad_y]) / 2]
pad_left, pad_right = [int(i) for i in np.floor([pad_x, pad_x]) / 2]
img = cv2.copyMakeBorder(
img,
pad_top,
pad_bottom,
pad_left,
pad_right,
cv2.BORDER_CONSTANT,
value=[0, 0, 0],
)
img = cv2.resize(img, (target_size, target_size))
image_data = img.astype("float32") / 255.0 # normalize
image_data = np.transpose(image_data, (2, 0, 1))
image_data = np.expand_dims(image_data, axis=0)
return image_data, resize_factor, pad_left, pad_top
def _postprocess(output, resize_factor, pad_left, pad_top):
outputs = np.transpose(np.squeeze(output[0]))
rows = outputs.shape[0]
boxes = []
scores = []
class_ids = []
for i in range(rows):
classes_scores = outputs[i][4:]
max_score = np.amax(classes_scores)
if max_score >= 0.2:
class_id = np.argmax(classes_scores)
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3]
left = int(round((x - w * 0.5 - pad_left) * resize_factor))
top = int(round((y - h * 0.5 - pad_top) * resize_factor))
width = int(round(w * resize_factor))
height = int(round(h * resize_factor))
class_ids.append(class_id)
scores.append(max_score)
boxes.append([left, top, width, height])
indices = cv2.dnn.NMSBoxes(boxes, scores, 0.25, 0.45)
detections = []
for i in indices:
box = boxes[i]
score = scores[i]
class_id = class_ids[i]
detections.append(
{"class": __labels[class_id], "score": float(score), "box": box}
)
return detections
class NudeDetector:
def __init__(self, providers=None):
self.onnx_session = onnxruntime.InferenceSession(
os.path.join(os.path.dirname(__file__), "best.onnx"),
providers=C.get_available_providers() if not providers else providers,
)
model_inputs = self.onnx_session.get_inputs()
input_shape = model_inputs[0].shape
self.input_width = input_shape[2] # 320
self.input_height = input_shape[3] # 320
self.input_name = model_inputs[0].name
def detect(self, image_path):
preprocessed_image, resize_factor, pad_left, pad_top = _read_image(
image_path, self.input_width
)
outputs = self.onnx_session.run(None, {self.input_name: preprocessed_image})
detections = _postprocess(outputs, resize_factor, pad_left, pad_top)
return detections
def censor(self, image_path, classes=[], output_path=None):
detections = self.detect(image_path)
if classes:
detections = [
detection for detection in detections if detection["class"] in classes
]
img = cv2.imread(image_path)
for detection in detections:
box = detection["box"]
x, y, w, h = box[0], box[1], box[2], box[3]
# change these pixels to pure black
img[y : y + h, x : x + w] = (0, 0, 0)
if not output_path:
image_path, ext = os.path.splitext(image_path)
output_path = f"{image_path}_censored{ext}"
cv2.imwrite(output_path, img)
return output_path
if __name__ == "__main__":
detector = NudeDetector()
detections = detector.detect("/Users/praneeth.bedapudi/Desktop/images.jpeg")
|