radpid / app.py
yassonee's picture
Update app.py
d42aec0 verified
raw
history blame
6.46 kB
# app.py
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import torch
# Configuration de la page
st.set_page_config(
page_title="Fraktur Detektion",
layout="wide",
initial_sidebar_state="collapsed"
)
# CSS optimisé
st.markdown("""
<style>
/* Réinitialisation complète */
.stApp {
background: transparent !important;
padding: 0 !important;
}
.block-container {
padding: 0.5rem !important;
max-width: 100% !important;
}
/* Suppression des éléments superflus */
#MainMenu, footer, header, .viewerBadge_container__1QSob {
display: none !important;
}
.stDeployButton {
display: none !important;
}
/* Style compact */
.uploadedFile {
border: 1px dashed var(--border-color);
border-radius: 0.5rem;
padding: 0.5rem;
}
.st-emotion-cache-1kyxreq {
margin-top: -2rem !important;
}
/* Conteneurs de résultats */
.result-box {
padding: 0.5rem;
border-radius: 0.375rem;
margin: 0.25rem 0;
border: 1px solid var(--border-color);
background: var(--background-color);
}
/* Tabs plus compacts */
.stTabs [data-baseweb="tab-list"] {
gap: 0.5rem;
}
.stTabs [data-baseweb="tab"] {
padding: 0.25rem 0.5rem;
font-size: 0.875rem;
}
/* Variables CSS pour le thème */
:root[data-theme="light"] {
--background-color: rgba(249, 250, 251, 0.8);
--border-color: #e5e7eb;
--text-color: #1f2937;
}
:root[data-theme="dark"] {
--background-color: rgba(17, 24, 39, 0.8);
--border-color: #374151;
--text-color: #e5e7eb;
}
/* Ajustements responsifs */
@media (max-width: 768px) {
.block-container {
padding: 0.25rem !important;
}
}
</style>
<script>
function updateTheme(isDark) {
document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
}
window.addEventListener('message', function(e) {
if (e.data.type === 'theme-change') {
updateTheme(e.data.theme === 'dark');
}
});
// Thème initial basé sur les préférences système
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
</script>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
return {
"D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"Nandodeomkar": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Bruch",
"normal": "Normal",
"abnormal": "Abnormal"
}
return translations.get(label.lower(), label)
def draw_boxes(image, predictions):
draw = ImageDraw.Draw(image)
for pred in predictions:
box = pred['box']
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
draw.rectangle(
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
outline=color,
width=2
)
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
draw.rectangle(text_bbox, fill=color)
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
return image
def main():
models = load_models()
# Contrôle de confiance simplifié
conf_threshold = st.slider(
"Konfidenzschwelle",
min_value=0.0,
max_value=1.0,
value=0.60,
step=0.05,
help="Schwellenwert für die Erkennung (0-1)"
)
# Upload plus propre
uploaded_file = st.file_uploader(
"",
type=['png', 'jpg', 'jpeg'],
key="xray_upload"
)
if uploaded_file:
col1, col2 = st.columns([1, 1])
with col1:
image = Image.open(uploaded_file)
max_size = (300, 300)
image.thumbnail(max_size, Image.Resampling.LANCZOS)
st.image(image, use_container_width=True)
with col2:
tab1, tab2 = st.tabs(["📊 Klassifizierung", "🔍 Lokalisierung"])
with tab1:
for name in ["Heem2", "Nandodeomkar"]:
with st.spinner("Analyse..."):
predictions = models[name](image)
for pred in predictions:
if pred['score'] >= conf_threshold:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
with tab2:
with st.spinner("Lokalisierung..."):
predictions = models["D3STRON"](image)
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
if filtered_preds:
result_image = image.copy()
result_image = draw_boxes(result_image, filtered_preds)
st.image(result_image, use_container_width=True)
for pred in filtered_preds:
st.markdown(f"""
<div class='result-box'>
{translate_label(pred['label'])}: {pred['score']:.1%}
</div>
""", unsafe_allow_html=True)
else:
st.info("Keine Erkennungen über dem Schwellenwert")
else:
st.info("Röntgenbild hochladen (JPEG, PNG, max. 5MB)")
if __name__ == "__main__":
main()