File size: 6,463 Bytes
d42aec0 a326b94 3bb1400 04a7bfd 3982789 6cc7ff9 9aecd9e 3982789 d42aec0 3982789 04a7bfd 005d8cf d42aec0 3982789 d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 9aecd9e d42aec0 3982789 d42aec0 3982789 005d8cf 88fb5fa d119a53 806ecee 3982789 9aecd9e 3bb1400 3982789 88fb5fa 3982789 88fb5fa 3982789 d42aec0 9aecd9e 88fb5fa 9aecd9e 6cc7ff9 88fb5fa 9aecd9e d42aec0 3982789 0000f4a d119a53 3982789 c16e85e d42aec0 88fb5fa d42aec0 3982789 9aecd9e 3982789 d42aec0 3982789 af17427 9aecd9e 3982789 9aecd9e 3982789 d42aec0 3982789 9aecd9e 3982789 d42aec0 3982789 9aecd9e d42aec0 3982789 d42aec0 9aecd9e d42aec0 6ea5ee2 3bb1400 d119a53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# app.py
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import torch
# Configuration de la page
st.set_page_config(
page_title="Fraktur Detektion",
layout="wide",
initial_sidebar_state="collapsed"
)
# CSS optimisé
st.markdown("""
<style>
/* Réinitialisation complète */
.stApp {
background: transparent !important;
padding: 0 !important;
}
.block-container {
padding: 0.5rem !important;
max-width: 100% !important;
}
/* Suppression des éléments superflus */
#MainMenu, footer, header, .viewerBadge_container__1QSob {
display: none !important;
}
.stDeployButton {
display: none !important;
}
/* Style compact */
.uploadedFile {
border: 1px dashed var(--border-color);
border-radius: 0.5rem;
padding: 0.5rem;
}
.st-emotion-cache-1kyxreq {
margin-top: -2rem !important;
}
/* Conteneurs de résultats */
.result-box {
padding: 0.5rem;
border-radius: 0.375rem;
margin: 0.25rem 0;
border: 1px solid var(--border-color);
background: var(--background-color);
}
/* Tabs plus compacts */
.stTabs [data-baseweb="tab-list"] {
gap: 0.5rem;
}
.stTabs [data-baseweb="tab"] {
padding: 0.25rem 0.5rem;
font-size: 0.875rem;
}
/* Variables CSS pour le thème */
:root[data-theme="light"] {
--background-color: rgba(249, 250, 251, 0.8);
--border-color: #e5e7eb;
--text-color: #1f2937;
}
:root[data-theme="dark"] {
--background-color: rgba(17, 24, 39, 0.8);
--border-color: #374151;
--text-color: #e5e7eb;
}
/* Ajustements responsifs */
@media (max-width: 768px) {
.block-container {
padding: 0.25rem !important;
}
}
</style>
<script>
function updateTheme(isDark) {
document.documentElement.setAttribute('data-theme', isDark ? 'dark' : 'light');
}
window.addEventListener('message', function(e) {
if (e.data.type === 'theme-change') {
updateTheme(e.data.theme === 'dark');
}
});
// Thème initial basé sur les préférences système
updateTheme(window.matchMedia('(prefers-color-scheme: dark)').matches);
</script>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
return {
"D3STRON": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"Heem2": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"Nandodeomkar": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Bruch",
"normal": "Normal",
"abnormal": "Abnormal"
}
return translations.get(label.lower(), label)
def draw_boxes(image, predictions):
draw = ImageDraw.Draw(image)
for pred in predictions:
box = pred['box']
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
draw.rectangle(
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
outline=color,
width=2
)
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
draw.rectangle(text_bbox, fill=color)
draw.text((box['xmin'], box['ymin']-15), label, fill="white")
return image
def main():
models = load_models()
# Contrôle de confiance simplifié
conf_threshold = st.slider(
"Konfidenzschwelle",
min_value=0.0,
max_value=1.0,
value=0.60,
step=0.05,
help="Schwellenwert für die Erkennung (0-1)"
)
# Upload plus propre
uploaded_file = st.file_uploader(
"",
type=['png', 'jpg', 'jpeg'],
key="xray_upload"
)
if uploaded_file:
col1, col2 = st.columns([1, 1])
with col1:
image = Image.open(uploaded_file)
max_size = (300, 300)
image.thumbnail(max_size, Image.Resampling.LANCZOS)
st.image(image, use_container_width=True)
with col2:
tab1, tab2 = st.tabs(["📊 Klassifizierung", "🔍 Lokalisierung"])
with tab1:
for name in ["Heem2", "Nandodeomkar"]:
with st.spinner("Analyse..."):
predictions = models[name](image)
for pred in predictions:
if pred['score'] >= conf_threshold:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
with tab2:
with st.spinner("Lokalisierung..."):
predictions = models["D3STRON"](image)
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
if filtered_preds:
result_image = image.copy()
result_image = draw_boxes(result_image, filtered_preds)
st.image(result_image, use_container_width=True)
for pred in filtered_preds:
st.markdown(f"""
<div class='result-box'>
{translate_label(pred['label'])}: {pred['score']:.1%}
</div>
""", unsafe_allow_html=True)
else:
st.info("Keine Erkennungen über dem Schwellenwert")
else:
st.info("Röntgenbild hochladen (JPEG, PNG, max. 5MB)")
if __name__ == "__main__":
main() |