Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,98 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
from transformers import
|
| 3 |
import torch
|
| 4 |
-
from PIL import Image
|
| 5 |
-
import
|
| 6 |
-
import cv2
|
| 7 |
|
| 8 |
-
st.set_page_config(page_title="Détection de
|
| 9 |
-
st.title("Détection de nodules pulmonaires sur images scanner")
|
| 10 |
|
| 11 |
@st.cache_resource
|
| 12 |
def load_model():
|
| 13 |
-
|
| 14 |
-
model.eval()
|
| 15 |
-
return model
|
| 16 |
|
| 17 |
-
def
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
if uploaded_file:
|
| 34 |
-
image = Image.open(uploaded_file)
|
| 35 |
-
|
| 36 |
col1, col2 = st.columns(2)
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
# Visualisation
|
| 47 |
-
img_array = np.array(image)
|
| 48 |
-
for pred in predictions:
|
| 49 |
-
if pred['score'] > 0.5:
|
| 50 |
-
box = pred['box']
|
| 51 |
-
x1, y1, x2, y2 = map(int, [box['xmin'], box['ymin'], box['xmax'], box['ymax']])
|
| 52 |
-
cv2.rectangle(img_array, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
| 53 |
-
text = f"Nodule: {pred['score']:.2f}"
|
| 54 |
-
cv2.putText(img_array, text, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
st.info("Veuillez vérifier que le modèle est correctement configuré sur Hugging Face.")
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
from transformers import pipeline
|
| 3 |
import torch
|
| 4 |
+
from PIL import Image, ImageDraw
|
| 5 |
+
import io
|
|
|
|
| 6 |
|
| 7 |
+
st.set_page_config(page_title="Détection de Fractures Osseuses", layout="wide")
|
|
|
|
| 8 |
|
| 9 |
@st.cache_resource
|
| 10 |
def load_model():
|
| 11 |
+
return pipeline("object-detection", model="D3STRON/bone-fracture-detr")
|
|
|
|
|
|
|
| 12 |
|
| 13 |
+
def draw_boxes(image, predictions):
|
| 14 |
+
draw = ImageDraw.Draw(image)
|
| 15 |
+
for pred in predictions:
|
| 16 |
+
box = pred['box']
|
| 17 |
+
label = f"{pred['label']} ({pred['score']:.2%})"
|
| 18 |
+
|
| 19 |
+
# Draw bounding box
|
| 20 |
+
draw.rectangle(
|
| 21 |
+
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
|
| 22 |
+
outline="red",
|
| 23 |
+
width=3
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Draw label background
|
| 27 |
+
text_bbox = draw.textbbox((box['xmin'], box['ymin']), label)
|
| 28 |
+
draw.rectangle(text_bbox, fill="red")
|
| 29 |
+
|
| 30 |
+
# Draw label text
|
| 31 |
+
draw.text(
|
| 32 |
+
(box['xmin'], box['ymin']),
|
| 33 |
+
label,
|
| 34 |
+
fill="white"
|
| 35 |
+
)
|
| 36 |
+
return image
|
| 37 |
+
|
| 38 |
+
def main():
|
| 39 |
+
st.title("🦴 Détecteur de Fractures Osseuses")
|
| 40 |
+
st.write("Téléchargez une radiographie pour détecter les fractures osseuses.")
|
| 41 |
|
| 42 |
+
pipe = load_model()
|
| 43 |
+
|
| 44 |
+
uploaded_file = st.file_uploader(
|
| 45 |
+
"Choisissez une image de radiographie",
|
| 46 |
+
type=['png', 'jpg', 'jpeg']
|
| 47 |
+
)
|
| 48 |
|
| 49 |
+
conf_threshold = st.slider(
|
| 50 |
+
"Seuil de confiance",
|
| 51 |
+
min_value=0.0,
|
| 52 |
+
max_value=1.0,
|
| 53 |
+
value=0.5,
|
| 54 |
+
step=0.05
|
| 55 |
+
)
|
| 56 |
|
| 57 |
if uploaded_file:
|
|
|
|
|
|
|
| 58 |
col1, col2 = st.columns(2)
|
| 59 |
|
| 60 |
+
# Original image
|
| 61 |
+
image = Image.open(uploaded_file)
|
| 62 |
+
col1.header("Image originale")
|
| 63 |
+
col1.image(image)
|
| 64 |
+
|
| 65 |
+
# Process image
|
| 66 |
+
with st.spinner("Analyse en cours..."):
|
| 67 |
+
predictions = pipe(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
+
# Filter predictions based on confidence threshold
|
| 70 |
+
filtered_preds = [
|
| 71 |
+
pred for pred in predictions
|
| 72 |
+
if pred['score'] >= conf_threshold
|
| 73 |
+
]
|
| 74 |
+
|
| 75 |
+
# Draw boxes on a copy of the image
|
| 76 |
+
result_image = image.copy()
|
| 77 |
+
result_image = draw_boxes(result_image, filtered_preds)
|
| 78 |
+
|
| 79 |
+
# Display results
|
| 80 |
+
col2.header("Résultats de la détection")
|
| 81 |
+
col2.image(result_image)
|
| 82 |
+
|
| 83 |
+
# Display detailed predictions
|
| 84 |
+
if filtered_preds:
|
| 85 |
+
st.subheader("Détails des détections")
|
| 86 |
+
for pred in filtered_preds:
|
| 87 |
+
st.write(
|
| 88 |
+
f"• Type: {pred['label']} - "
|
| 89 |
+
f"Confiance: {pred['score']:.2%}"
|
| 90 |
+
)
|
| 91 |
+
else:
|
| 92 |
+
st.warning(
|
| 93 |
+
"Aucune fracture détectée avec le seuil de confiance actuel. "
|
| 94 |
+
"Essayez de baisser le seuil pour plus de résultats."
|
| 95 |
+
)
|
| 96 |
|
| 97 |
+
if __name__ == "__main__":
|
| 98 |
+
main()
|
|
|