File size: 10,727 Bytes
f700114 cc165f9 f700114 8d54860 6cc7ff9 f700114 cc165f9 383659b f700114 005d8cf f700114 3982789 f700114 e59f527 9aecd9e 1d4ce47 f700114 8d54860 e59f527 1d4ce47 952e5d1 e59f527 952e5d1 e59f527 952e5d1 8d54860 952e5d1 1d4ce47 e59f527 1d4ce47 e59f527 1d4ce47 e59f527 1d4ce47 e59f527 1d4ce47 e59f527 8d54860 e59f527 1d4ce47 8d54860 1d4ce47 e59f527 952e5d1 e59f527 7bb5511 8d54860 952e5d1 8d54860 952e5d1 8d54860 f700114 cc165f9 ebfde4d cc165f9 f700114 383659b 952e5d1 383659b 8d54860 952e5d1 383659b 8d54860 9f81278 8d54860 9f81278 8d54860 9f81278 8d54860 9f81278 8d54860 9f81278 8d54860 e59f527 8d54860 9f81278 383659b 8d54860 1d4ce47 8d54860 268bd19 9f81278 383659b 9f81278 1d4ce47 9f81278 8d54860 f700114 cc165f9 1d4ce47 952e5d1 35a3a73 8d54860 952e5d1 35a3a73 952e5d1 268bd19 9f81278 268bd19 9f81278 268bd19 8d54860 35a3a73 268bd19 8d54860 952e5d1 268bd19 8ab1fd2 268bd19 8ab1fd2 268bd19 383659b f700114 268bd19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
import numpy as np
import colorsys
st.set_page_config(
page_title="Fraktur Detektion",
layout="wide",
initial_sidebar_state="collapsed"
)
st.markdown("""
<style>
.stApp {
background: #f0f2f5 !important;
}
.block-container {
padding-top: 0 !important;
padding-bottom: 0 !important;
max-width: 1400px !important;
}
.upload-container {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
margin-bottom: 1rem;
text-align: center;
}
.results-container {
background: white;
padding: 1.5rem;
border-radius: 10px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.result-box {
background: #f8f9fa;
padding: 0.75rem;
border-radius: 8px;
margin: 0.5rem 0;
border: 1px solid #e9ecef;
}
h1, h2, h3, h4, p {
color: #1a1a1a !important;
margin: 0.5rem 0 !important;
}
.stImage {
background: white;
padding: 0.5rem;
border-radius: 8px;
box-shadow: 0 1px 3px rgba(0,0,0,0.1);
}
.stImage > img {
max-height: 300px !important;
width: auto !important;
margin: 0 auto !important;
display: block !important;
}
[data-testid="stFileUploader"] {
width: 100% !important;
}
.stButton > button {
width: 200px;
background-color: #0066cc !important;
color: white !important;
border: none !important;
padding: 0.5rem 1rem !important;
border-radius: 5px !important;
transition: all 0.3s ease !important;
}
.stButton > button:hover {
background-color: #0052a3 !important;
transform: translateY(-1px);
}
#MainMenu, footer, header, [data-testid="stToolbar"] {
display: none !important;
}
/* Hide deprecation warning */
[data-testid="stExpander"], .element-container:has(>.stAlert) {
display: none !important;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
return {
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"RöntgenMeister": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Knochenbruch",
"normal": "Normal",
"abnormal": "Auffällig",
"F1": "Knochenbruch",
"NF": "Kein Knochenbruch"
}
return translations.get(label.lower(), label)
def create_heatmap_overlay(image, box, score):
overlay = Image.new('RGBA', image.size, (0, 0, 0, 0))
draw = ImageDraw.Draw(overlay)
def get_temp_color(value):
if value > 0.8:
return (255, 0, 0) # Rouge vif
elif value > 0.6:
return (255, 69, 0) # Rouge-orange
elif value > 0.4:
return (255, 165, 0) # Orange
else:
return (255, 255, 0) # Jaune
x1, y1 = box['xmin'], box['ymin']
x2, y2 = box['xmax'], box['ymax']
width = x2 - x1
height = y2 - y1
steps = 30
for i in range(steps):
alpha = int(255 * (1 - (i / steps)) * 0.7)
base_color = get_temp_color(score)
color = base_color + (alpha,)
shrink_x = (i * width) / (steps * 2)
shrink_y = (i * height) / (steps * 2)
draw.rectangle(
[x1 + shrink_x, y1 + shrink_y, x2 - shrink_x, y2 - shrink_y],
fill=color,
outline=None
)
border_color = get_temp_color(score) + (200,)
draw.rectangle([x1, y1, x2, y2], outline=border_color, width=2)
return overlay
def draw_boxes(image, predictions):
result_image = image.copy().convert('RGBA')
sorted_predictions = sorted(predictions, key=lambda x: x['score'])
for pred in sorted_predictions:
box = pred['box']
score = pred['score']
heatmap = create_heatmap_overlay(image, box, score)
result_image = Image.alpha_composite(result_image, heatmap)
draw = ImageDraw.Draw(result_image)
temp = 36.5 + (score * 2.5)
label = f"{translate_label(pred['label'])} ({score:.1%}) • {temp:.1f}°C"
text_bbox = draw.textbbox((box['xmin'], box['ymin']-25), label)
padding = 3
text_bbox = (
text_bbox[0]-padding, text_bbox[1]-padding,
text_bbox[2]+padding, text_bbox[3]+padding
)
draw.rectangle(text_bbox, fill="#000000CC")
draw.text(
(box['xmin'], box['ymin']-25),
label,
fill="#FFFFFF",
stroke_width=1,
stroke_fill="#000000"
)
return result_image
def main():
models = load_models()
with st.container():
st.write("### 📤 Röntgenbild hochladen")
uploaded_file = st.file_uploader("Bild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
col1, col2 = st.columns([2, 1])
with col1:
conf_threshold = st.slider(
"Konfidenzschwelle",
min_value=0.0, max_value=1.0,
value=0.60, step=0.05,
label_visibility="visible"
)
with col2:
analyze_button = st.button("Analysieren")
if uploaded_file and analyze_button:
with st.spinner("Bild wird analysiert..."):
image = Image.open(uploaded_file)
results_container = st.container()
predictions_watcher = models["KnochenWächter"](image)
predictions_master = models["RöntgenMeister"](image)
predictions_locator = models["KnochenAuge"](image)
has_fracture = False
max_fracture_score = 0
filtered_locations = [p for p in predictions_locator
if p['score'] >= conf_threshold
and 'fracture' in p['label'].lower()]
for pred in predictions_watcher:
if pred['score'] >= conf_threshold and 'fracture' in pred['label'].lower():
has_fracture = True
max_fracture_score = max(max_fracture_score, pred['score'])
with results_container:
st.write("### 🔍 Analyse Ergebnisse")
col1, col2 = st.columns(2)
with col1:
st.write("#### 🤖 KI-Diagnose")
st.write("##### 🛡️ KnochenWächter")
for pred in predictions_watcher:
if pred['score'] >= conf_threshold:
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
label_lower = pred['label'].lower()
if 'fracture' in label_lower:
has_fracture = True
max_fracture_score = max(max_fracture_score, pred['score'])
st.markdown(f"""
<div class="result-box" style="color: #1a1a1a;">
<span style="color: {confidence_color}; font-weight: 500;">
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
st.write("#### 🎓 RöntgenMeister")
for pred in predictions_master:
if pred['score'] >= conf_threshold:
confidence_color = '#0066cc' if pred['score'] > 0.7 else '#ffa500'
st.markdown(f"""
<div class="result-box" style="color: #1a1a1a;">
<span style="color: {confidence_color}; font-weight: 500;">
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
if max_fracture_score > 0:
st.write("#### 📊 Wahrscheinlichkeit")
no_fracture_prob = 1 - max_fracture_score
st.markdown(f"""
<div class="result-box" style="color: #1a1a1a;">
Knochenbruch: <strong style="color: #0066cc">{max_fracture_score:.1%}</strong><br>
Kein Knochenbruch: <strong style="color: #ffa500">{no_fracture_prob:.1%}</strong>
</div>
""", unsafe_allow_html=True)
with col2:
predictions = models["KnochenAuge"](image)
# Debug: Afficher toutes les prédictions avant filtrage
st.write("Debug - Toutes les prédictions:")
for p in predictions:
st.write(f"Label: {p['label']}, Score: {p['score']}")
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold
and 'fracture' in p['label'].lower()]
# Debug: Afficher les prédictions filtrées
st.write("Debug - Prédictions filtrées:")
for p in filtered_preds:
st.write(f"Label: {p['label']}, Score: {p['score']}, Box: {p['box']}")
if filtered_preds:
st.write("#### 🎯 Fraktur Lokalisation")
result_image = draw_boxes(image, filtered_preds)
st.image(result_image, use_container_width=True)
else:
st.write("#### 🖼️ Röntgenbild")
st.image(image, use_container_width=True)
if __name__ == "__main__":
main() |