File size: 5,490 Bytes
f700114 cc165f9 f700114 6cc7ff9 f700114 cc165f9 383659b f700114 005d8cf f700114 3982789 f700114 1f4aa65 2497a00 9aecd9e 1f4aa65 f700114 2497a00 f700114 3982789 1f4aa65 f700114 5db7880 383659b f700114 1f4aa65 383659b 2497a00 383659b 1f4aa65 2497a00 c6944a1 7bb5511 f700114 cc165f9 ebfde4d cc165f9 f700114 383659b f700114 383659b 1f4aa65 383659b 1f4aa65 ebc0e7a 383659b 5db7880 f700114 cc165f9 383659b 7bb5511 383659b 7bb5511 5db7880 1f4aa65 383659b 7bb5511 ff4daac 7bb5511 ff4daac 5db7880 ff4daac 5db7880 383659b f700114 1f4aa65 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
import streamlit as st
from transformers import pipeline
from PIL import Image, ImageDraw
st.set_page_config(
page_title="Fraktur Detektion",
layout="wide",
initial_sidebar_state="collapsed"
)
st.markdown("""
<style>
.stApp {
padding: 0 !important;
height: 100vh !important;
overflow: hidden !important;
}
.block-container {
padding: 0.25rem !important;
max-width: 100% !important;
}
.stImage > img {
max-height: 150px !important;
object-fit: contain !important;
}
h2, h3 {
font-size: 0.9rem !important;
}
.result-box {
font-size: 0.8rem !important;
margin: 0.2rem 0 !important;
}
.center-container {
display: flex;
flex-direction: column;
align-items: center;
justify-content: center;
height: 100%;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource
def load_models():
return {
"KnochenAuge": pipeline("object-detection", model="D3STRON/bone-fracture-detr"),
"KnochenWächter": pipeline("image-classification", model="Heem2/bone-fracture-detection-using-xray"),
"RöntgenMeister": pipeline("image-classification",
model="nandodeomkar/autotrain-fracture-detection-using-google-vit-base-patch-16-54382127388")
}
def translate_label(label):
translations = {
"fracture": "Knochenbruch",
"no fracture": "Kein Bruch",
"normal": "Normal",
"abnormal": "Auffällig"
}
return translations.get(label.lower(), label)
def draw_boxes(image, predictions):
draw = ImageDraw.Draw(image)
for pred in predictions:
box = pred['box']
label = f"{translate_label(pred['label'])} ({pred['score']:.2%})"
color = "#2563eb" if pred['score'] > 0.7 else "#eab308"
draw.rectangle(
[(box['xmin'], box['ymin']), (box['xmax'], box['ymax'])],
outline=color,
width=2
)
# Ajouter des points de "chaleur" aux fractures détectées
center_x = (box['xmin'] + box['xmax']) / 2
center_y = (box['ymin'] + box['ymax']) / 2
radius = 5
draw.ellipse(
[(center_x - radius, center_y - radius), (center_x + radius, center_y + radius)],
fill=color
)
# Label plus compact
draw.text((box['xmin'], box['ymin'] - 15), label, fill="white")
return image
def main():
models = load_models()
if "uploaded" not in st.session_state:
st.session_state["uploaded"] = False
if not st.session_state["uploaded"]:
st.markdown("""
<div class="center-container">
<h2>📤 Röntgenbild Hochladen</h2>
<p>Bitte laden Sie ein Röntgenbild hoch, um die Analyse zu starten.</p>
</div>
""", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Röntgenbild auswählen", type=['png', 'jpg', 'jpeg'], label_visibility="collapsed")
if uploaded_file:
st.session_state["uploaded"] = True
st.session_state["file"] = uploaded_file
st.session_state["analyze"] = False
else:
uploaded_file = st.session_state["file"]
if not st.session_state.get("analyze", False):
if st.button("🔍 Analyse starten"):
st.session_state["analyze"] = True
if st.session_state["analyze"]:
col1, col2, col3 = st.columns([1, 1.5, 1])
with col1:
st.markdown("### 🎯 KI-Analyse")
st.markdown("**🛡️ Der KnochenWächter**")
image = Image.open(uploaded_file)
predictions_wachter = models["KnochenWächter"](image)
for pred in predictions_wachter:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
st.markdown("**🎓 Der RöntgenMeister**")
predictions_meister = models["RöntgenMeister"](image)
for pred in predictions_meister:
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
st.markdown(f"""
<div class='result-box'>
<span style='color: {score_color}; font-weight: 500;'>
{pred['score']:.1%}
</span> - {translate_label(pred['label'])}
</div>
""", unsafe_allow_html=True)
with col2:
st.image(image, use_container_width=True)
predictions_auge = models["KnochenAuge"](image)
filtered_preds = [p for p in predictions_auge if p['score'] >= 0.6]
if filtered_preds:
with col3:
st.markdown("### 👁️ Das KnochenAuge - Lokalisation")
result_image = image.copy()
result_image = draw_boxes(result_image, filtered_preds)
st.image(result_image, use_container_width=True)
if __name__ == "__main__":
main()
|