Update app.py
Browse files
app.py
CHANGED
@@ -22,9 +22,9 @@ st.markdown("""
|
|
22 |
}
|
23 |
|
24 |
.stImage > img {
|
25 |
-
width:
|
26 |
height: auto !important;
|
27 |
-
max-height:
|
28 |
object-fit: contain !important;
|
29 |
}
|
30 |
|
@@ -70,6 +70,15 @@ def draw_boxes(image, predictions):
|
|
70 |
width=2
|
71 |
)
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
# Label plus compact
|
74 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
75 |
draw.rectangle(text_bbox, fill=color)
|
@@ -97,47 +106,43 @@ def main():
|
|
97 |
if uploaded_file:
|
98 |
image = Image.open(uploaded_file)
|
99 |
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
# Analyse avec KnochenAuge (localisation)
|
103 |
-
|
104 |
-
|
105 |
-
filtered_preds = [p for p in predictions if p['score'] >= conf_threshold]
|
106 |
|
107 |
if filtered_preds:
|
|
|
108 |
result_image = image.copy()
|
109 |
result_image = draw_boxes(result_image, filtered_preds)
|
110 |
st.image(result_image, use_container_width=True)
|
111 |
|
112 |
-
# Toujours afficher les résultats des autres modèles
|
113 |
-
st.markdown("#### 🎯 KI-Analyse")
|
114 |
-
col_left, col_right = st.columns(2)
|
115 |
-
|
116 |
-
with col_left:
|
117 |
-
st.markdown("**🛡️ Der KnochenWächter**")
|
118 |
-
predictions = models["KnochenWächter"](image)
|
119 |
-
for pred in predictions:
|
120 |
-
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
121 |
-
st.markdown(f"""
|
122 |
-
<div class='result-box'>
|
123 |
-
<span style='color: {score_color}; font-weight: 500;'>
|
124 |
-
{pred['score']:.1%}
|
125 |
-
</span> - {translate_label(pred['label'])}
|
126 |
-
</div>
|
127 |
-
""", unsafe_allow_html=True)
|
128 |
-
|
129 |
-
with col_right:
|
130 |
-
st.markdown("**🎓 Der RöntgenMeister**")
|
131 |
-
predictions = models["RöntgenMeister"](image)
|
132 |
-
for pred in predictions:
|
133 |
-
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
134 |
-
st.markdown(f"""
|
135 |
-
<div class='result-box'>
|
136 |
-
<span style='color: {score_color}; font-weight: 500;'>
|
137 |
-
{pred['score']:.1%}
|
138 |
-
</span> - {translate_label(pred['label'])}
|
139 |
-
</div>
|
140 |
-
""", unsafe_allow_html=True)
|
141 |
else:
|
142 |
st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")
|
143 |
|
|
|
22 |
}
|
23 |
|
24 |
.stImage > img {
|
25 |
+
width: 70% !important;
|
26 |
height: auto !important;
|
27 |
+
max-height: 150px !important;
|
28 |
object-fit: contain !important;
|
29 |
}
|
30 |
|
|
|
70 |
width=2
|
71 |
)
|
72 |
|
73 |
+
# Ajouter des points de "chaleur" aux fractures détectées
|
74 |
+
center_x = (box['xmin'] + box['xmax']) / 2
|
75 |
+
center_y = (box['ymin'] + box['ymax']) / 2
|
76 |
+
radius = 5
|
77 |
+
draw.ellipse(
|
78 |
+
[(center_x - radius, center_y - radius), (center_x + radius, center_y + radius)],
|
79 |
+
fill=color
|
80 |
+
)
|
81 |
+
|
82 |
# Label plus compact
|
83 |
text_bbox = draw.textbbox((box['xmin'], box['ymin']-15), label)
|
84 |
draw.rectangle(text_bbox, fill=color)
|
|
|
106 |
if uploaded_file:
|
107 |
image = Image.open(uploaded_file)
|
108 |
|
109 |
+
# Toujours afficher les résultats des autres modèles
|
110 |
+
st.markdown("### 🎯 KI-Analyse")
|
111 |
+
|
112 |
+
st.markdown("**🛡️ Der KnochenWächter**")
|
113 |
+
predictions_wachter = models["KnochenWächter"](image)
|
114 |
+
for pred in predictions_wachter:
|
115 |
+
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
116 |
+
st.markdown(f"""
|
117 |
+
<div class='result-box'>
|
118 |
+
<span style='color: {score_color}; font-weight: 500;'>
|
119 |
+
{pred['score']:.1%}
|
120 |
+
</span> - {translate_label(pred['label'])}
|
121 |
+
</div>
|
122 |
+
""", unsafe_allow_html=True)
|
123 |
+
|
124 |
+
st.markdown("**🎓 Der RöntgenMeister**")
|
125 |
+
predictions_meister = models["RöntgenMeister"](image)
|
126 |
+
for pred in predictions_meister:
|
127 |
+
score_color = "#22c55e" if pred['score'] > 0.7 else "#eab308"
|
128 |
+
st.markdown(f"""
|
129 |
+
<div class='result-box'>
|
130 |
+
<span style='color: {score_color}; font-weight: 500;'>
|
131 |
+
{pred['score']:.1%}
|
132 |
+
</span> - {translate_label(pred['label'])}
|
133 |
+
</div>
|
134 |
+
""", unsafe_allow_html=True)
|
135 |
|
136 |
# Analyse avec KnochenAuge (localisation)
|
137 |
+
predictions_auge = models["KnochenAuge"](image)
|
138 |
+
filtered_preds = [p for p in predictions_auge if p['score'] >= conf_threshold]
|
|
|
139 |
|
140 |
if filtered_preds:
|
141 |
+
st.markdown("#### 👁️ Das KnochenAuge - Lokalisation")
|
142 |
result_image = image.copy()
|
143 |
result_image = draw_boxes(result_image, filtered_preds)
|
144 |
st.image(result_image, use_container_width=True)
|
145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
else:
|
147 |
st.info("Bitte laden Sie ein Röntgenbild hoch (JPEG, PNG)")
|
148 |
|