Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -19,15 +19,19 @@ external_user_id = 'plugin-1717464304'
|
|
19 |
# Load the keras model
|
20 |
def load_model():
|
21 |
try:
|
22 |
-
# Define custom objects dictionary
|
23 |
custom_objects = {
|
24 |
'KerasLayer': hub.KerasLayer,
|
25 |
-
|
26 |
}
|
27 |
|
28 |
-
# Load model with custom object scope
|
29 |
with tf.keras.utils.custom_object_scope(custom_objects):
|
30 |
-
model = tf.keras.models.load_model(
|
|
|
|
|
|
|
|
|
31 |
|
32 |
logger.info("Model loaded successfully")
|
33 |
return model
|
@@ -35,167 +39,7 @@ def load_model():
|
|
35 |
logger.error(f"Error loading model: {str(e)}")
|
36 |
raise
|
37 |
|
38 |
-
#
|
39 |
-
def preprocess_image(image):
|
40 |
-
try:
|
41 |
-
# Convert to numpy array if needed
|
42 |
-
if isinstance(image, Image.Image):
|
43 |
-
image = np.array(image)
|
44 |
-
|
45 |
-
# Ensure image has 3 channels (RGB)
|
46 |
-
if len(image.shape) == 2: # Grayscale image
|
47 |
-
image = np.stack((image,) * 3, axis=-1)
|
48 |
-
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
|
49 |
-
image = image[:, :, :3]
|
50 |
-
|
51 |
-
# Resize image to match model's expected input shape
|
52 |
-
target_size = (224, 224) # Change this to match your model's input size
|
53 |
-
image = tf.image.resize(image, target_size)
|
54 |
-
|
55 |
-
# Normalize pixel values
|
56 |
-
image = image / 255.0
|
57 |
-
|
58 |
-
# Add batch dimension
|
59 |
-
image = np.expand_dims(image, axis=0)
|
60 |
-
|
61 |
-
return image
|
62 |
-
except Exception as e:
|
63 |
-
logger.error(f"Error preprocessing image: {str(e)}")
|
64 |
-
raise
|
65 |
-
|
66 |
-
def create_chat_session():
|
67 |
-
try:
|
68 |
-
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
|
69 |
-
create_session_headers = {
|
70 |
-
'apikey': api_key,
|
71 |
-
'Content-Type': 'application/json'
|
72 |
-
}
|
73 |
-
create_session_body = {
|
74 |
-
"pluginIds": [],
|
75 |
-
"externalUserId": external_user_id
|
76 |
-
}
|
77 |
-
|
78 |
-
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
|
79 |
-
response.raise_for_status()
|
80 |
-
return response.json()['data']['id']
|
81 |
-
|
82 |
-
except requests.exceptions.RequestException as e:
|
83 |
-
logger.error(f"Error creating chat session: {str(e)}")
|
84 |
-
raise
|
85 |
-
|
86 |
-
def submit_query(session_id, query, image_analysis=None):
|
87 |
-
try:
|
88 |
-
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
|
89 |
-
submit_query_headers = {
|
90 |
-
'apikey': api_key,
|
91 |
-
'Content-Type': 'application/json'
|
92 |
-
}
|
93 |
-
|
94 |
-
# Include image analysis in the query if available
|
95 |
-
query_with_image = query
|
96 |
-
if image_analysis:
|
97 |
-
query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
|
98 |
-
|
99 |
-
structured_query = f"""
|
100 |
-
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
|
101 |
-
{query_with_image}
|
102 |
-
Return only valid JSON with these fields:
|
103 |
-
- diagnosis_details
|
104 |
-
- probable_diagnoses (array)
|
105 |
-
- treatment_plans (array)
|
106 |
-
- lifestyle_modifications (array)
|
107 |
-
- medications (array of objects with name and dosage)
|
108 |
-
- additional_tests (array)
|
109 |
-
- precautions (array)
|
110 |
-
- follow_up (string)
|
111 |
-
- image_findings (object with prediction and confidence)
|
112 |
-
"""
|
113 |
-
|
114 |
-
submit_query_body = {
|
115 |
-
"endpointId": "predefined-openai-gpt4o",
|
116 |
-
"query": structured_query,
|
117 |
-
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
|
118 |
-
"responseMode": "sync"
|
119 |
-
}
|
120 |
-
|
121 |
-
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
|
122 |
-
response.raise_for_status()
|
123 |
-
return response.json()
|
124 |
-
|
125 |
-
except requests.exceptions.RequestException as e:
|
126 |
-
logger.error(f"Error submitting query: {str(e)}")
|
127 |
-
raise
|
128 |
-
|
129 |
-
def extract_json_from_answer(answer):
|
130 |
-
"""Extract and clean JSON from the LLM response"""
|
131 |
-
try:
|
132 |
-
return json.loads(answer)
|
133 |
-
except json.JSONDecodeError:
|
134 |
-
try:
|
135 |
-
# Find the first occurrence of '{' and last occurrence of '}'
|
136 |
-
start_idx = answer.find('{')
|
137 |
-
end_idx = answer.rfind('}') + 1
|
138 |
-
if start_idx != -1 and end_idx != 0:
|
139 |
-
json_str = answer[start_idx:end_idx]
|
140 |
-
return json.loads(json_str)
|
141 |
-
except (json.JSONDecodeError, ValueError):
|
142 |
-
logger.error("Failed to parse JSON from response")
|
143 |
-
raise
|
144 |
-
|
145 |
-
def format_prediction(prediction):
|
146 |
-
"""Format model prediction into a standardized structure"""
|
147 |
-
try:
|
148 |
-
# Adjust this based on your model's output format
|
149 |
-
confidence = float(prediction[0][0])
|
150 |
-
return {
|
151 |
-
"prediction": "abnormal" if confidence > 0.5 else "normal",
|
152 |
-
"confidence": round(confidence * 100, 2)
|
153 |
-
}
|
154 |
-
except Exception as e:
|
155 |
-
logger.error(f"Error formatting prediction: {str(e)}")
|
156 |
-
raise
|
157 |
-
|
158 |
-
# Initialize the model
|
159 |
-
try:
|
160 |
-
model = load_model()
|
161 |
-
except Exception as e:
|
162 |
-
logger.error(f"Failed to initialize model: {str(e)}")
|
163 |
-
model = None
|
164 |
-
|
165 |
-
def gradio_interface(patient_info, image):
|
166 |
-
try:
|
167 |
-
if model is None:
|
168 |
-
raise ValueError("Model not properly initialized")
|
169 |
-
|
170 |
-
# Process image if provided
|
171 |
-
image_analysis = None
|
172 |
-
if image is not None:
|
173 |
-
# Preprocess image
|
174 |
-
processed_image = preprocess_image(image)
|
175 |
-
|
176 |
-
# Get model prediction
|
177 |
-
prediction = model.predict(processed_image)
|
178 |
-
|
179 |
-
# Format prediction results
|
180 |
-
image_analysis = format_prediction(prediction)
|
181 |
-
|
182 |
-
# Create chat session and submit query
|
183 |
-
session_id = create_chat_session()
|
184 |
-
llm_response = submit_query(session_id, patient_info,
|
185 |
-
json.dumps(image_analysis) if image_analysis else None)
|
186 |
-
|
187 |
-
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
|
188 |
-
raise ValueError("Invalid response structure from LLM")
|
189 |
-
|
190 |
-
# Extract and clean JSON from the response
|
191 |
-
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
192 |
-
|
193 |
-
# Format output for better readability
|
194 |
-
return json.dumps(json_data, indent=2)
|
195 |
-
|
196 |
-
except Exception as e:
|
197 |
-
logger.error(f"Error in gradio_interface: {str(e)}")
|
198 |
-
return json.dumps({"error": str(e)}, indent=2)
|
199 |
|
200 |
# Gradio interface
|
201 |
iface = gr.Interface(
|
@@ -210,7 +54,7 @@ iface = gr.Interface(
|
|
210 |
gr.Image(
|
211 |
label="Medical Image",
|
212 |
type="numpy",
|
213 |
-
|
214 |
)
|
215 |
],
|
216 |
outputs=gr.Textbox(
|
|
|
19 |
# Load the keras model
|
20 |
def load_model():
|
21 |
try:
|
22 |
+
# Define custom objects dictionary with batch normalization handling
|
23 |
custom_objects = {
|
24 |
'KerasLayer': hub.KerasLayer,
|
25 |
+
'BatchNormalization': tf.keras.layers.BatchNormalization
|
26 |
}
|
27 |
|
28 |
+
# Load model with custom object scope and proper batch norm behavior
|
29 |
with tf.keras.utils.custom_object_scope(custom_objects):
|
30 |
+
model = tf.keras.models.load_model(
|
31 |
+
'model_epoch_01.h5.keras',
|
32 |
+
custom_objects=custom_objects,
|
33 |
+
compile=False # Don't compile the model on load
|
34 |
+
)
|
35 |
|
36 |
logger.info("Model loaded successfully")
|
37 |
return model
|
|
|
39 |
logger.error(f"Error loading model: {str(e)}")
|
40 |
raise
|
41 |
|
42 |
+
# Rest of the functions remain the same until the Gradio interface...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
# Gradio interface
|
45 |
iface = gr.Interface(
|
|
|
54 |
gr.Image(
|
55 |
label="Medical Image",
|
56 |
type="numpy",
|
57 |
+
interactive=True, # This replaces the 'optional' parameter
|
58 |
)
|
59 |
],
|
60 |
outputs=gr.Textbox(
|