NeuroGenAI / app.py
yashbyname's picture
Update app.py
ae01e5c verified
raw
history blame
13.3 kB
import requests
import gradio as gr
import logging
import json
import tf_keras
import tensorflow_hub as hub
import numpy as np
from PIL import Image
import os
from typing import Optional, Dict, Any, Union
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class MedicalDiagnosisModel:
def __init__(self, model_path: str):
self.model_path = model_path
self.model = self._load_model()
def _load_model(self) -> Optional[tf_keras.Model]:
"""Load the transfer learning model with proper error handling."""
try:
if not os.path.exists(self.model_path):
raise FileNotFoundError(f"Model file not found at {self.model_path}")
logger.info(f"Loading model from {self.model_path}")
# Define custom objects dictionary for transfer learning
custom_objects = {
'KerasLayer': hub.KerasLayer
}
try:
logger.info("Attempting to load model with custom objects...")
with tf_keras.utils.custom_object_scope(custom_objects):
model = tf_keras.models.load_model(self.model_path, compile=False)
except Exception as e:
logger.error(f"Failed to load with custom objects: {str(e)}")
logger.info("Attempting to load model without custom objects...")
model = tf_keras.models.load_model(self.model_path, compile=False)
model.summary()
logger.info("Model loaded successfully")
return model
except Exception as e:
logger.error(f"Error loading model: {str(e)}")
return None
def preprocess_image(self, image: Image.Image):
"""Preprocess the input image for model prediction."""
try:
# Convert to RGB and resize
image = image.convert('RGB')
image = image.resize((256, 256))
# Convert to numpy array and normalize
image_array = np.array(image)
image_array = image_array / 255.0
# Add batch dimension
image_array = np.expand_dims(image_array, axis=0)
logger.info(f"Preprocessed image shape: {image_array.shape}")
return image_array
except Exception as e:
logger.error(f"Error preprocessing image: {str(e)}")
raise
def predict(self, image: np.ndarray) -> Dict[str, float]:
"""Run model prediction and return results."""
try:
prediction = self.model.predict(image)
return {
"prediction": float(prediction[0][0]),
"confidence": float(prediction[0][0]) * 100
}
except Exception as e:
logger.error(f"Error during prediction: {str(e)}")
raise
class MedicalDiagnosisAPI:
def __init__(self, api_key: str, user_id: str):
self.api_key = api_key
self.user_id = user_id
self.base_url = "https://api.example.com/v1" # Replace with actual API URL
def create_chat_session(self) -> str:
"""Create a new chat session and return session ID."""
try:
response = requests.post(
f"{self.base_url}/sessions",
headers={
"Authorization": f"Bearer {self.api_key}",
"X-User-ID": self.user_id
}
)
response.raise_for_status()
return response.json()["session_id"]
except Exception as e:
logger.error(f"Error creating chat session: {str(e)}")
raise
def submit_query(self, session_id: str, patient_info: str,
image_analysis: Optional[str] = None) -> Dict[str, Any]:
"""Submit a query to the API and return the response."""
try:
payload = {
"patient_info": patient_info,
"image_analysis": image_analysis
}
response = requests.post(
f"{self.base_url}/sessions/{session_id}/query",
headers={
"Authorization": f"Bearer {self.api_key}",
"X-User-ID": self.user_id
},
json=payload
)
response.raise_for_status()
return response.json()
except Exception as e:
logger.error(f"Error submitting query: {str(e)}")
raise
def extract_json_from_answer(answer: str) -> Dict[str, Any]:
"""Extract and parse JSON from the API response."""
try:
# Find JSON content between triple backticks if present
if "```json" in answer and "```" in answer:
json_str = answer.split("```json")[1].split("```")[0].strip()
else:
json_str = answer.strip()
return json.loads(json_str)
except Exception as e:
logger.error(f"Error extracting JSON from answer: {str(e)}")
raise
class MedicalDiagnosisApp:
def __init__(self, model_path: str, api_key: str, user_id: str):
self.model = MedicalDiagnosisModel(model_path)
self.api = MedicalDiagnosisAPI(api_key, user_id)
def process_request(self, patient_info: str,
image: Optional[Image.Image]) -> str:
"""Process a medical diagnosis request."""
try:
if self.model.model is None:
return json.dumps({
"error": "Model initialization failed",
"status": "error"
}, indent=2)
# Process image if provided
image_analysis = None
if image is not None:
processed_image = self.model.preprocess_image(image)
image_analysis = self.model.predict(processed_image)
logger.info(f"Image analysis results: {image_analysis}")
# Create chat session and submit query
session_id = self.api.create_chat_session()
llm_response = self.api.submit_query(
session_id,
patient_info,
json.dumps(image_analysis) if image_analysis else None
)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure from LLM")
json_data = extract_json_from_answer(llm_response['data']['answer'])
return json.dumps(json_data, indent=2)
except Exception as e:
logger.error(f"Error processing request: {str(e)}")
return json.dumps({
"error": str(e),
"status": "error",
"details": "Check the application logs for more information"
}, indent=2)
def create_gradio_interface() -> gr.Interface:
"""Create and configure the Gradio interface."""
app = MedicalDiagnosisApp(
model_path='model_epoch_01.h5.keras',
api_key='KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3',
user_id='plugin-1717464304'
)
return gr.Interface(
fn=app.process_request,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
),
gr.Image(
label="Medical Image",
type="numpy",
interactive=True
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter patient information and optionally upload a medical image for analysis."
)
if __name__ == "__main__":
# Log version information
logger.info(f"TF-Keras version: {tf_keras.__version__}")
logger.info(f"TensorFlow Hub version: {hub.__version__}")
logger.info(f"Gradio version: {gr.__version__}")
# Create and launch the interface
iface = create_gradio_interface()
iface.launch(
server_name="0.0.0.0",
debug=True
)
# import requests
# import gradio as gr
# import logging
# import json
# # Set up logging
# logging.basicConfig(level=logging.INFO)
# logger = logging.getLogger(__name__)
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# def create_chat_session():
# try:
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response.raise_for_status()
# return response.json()['data']['id']
# except requests.exceptions.RequestException as e:
# logger.error(f"Error creating chat session: {str(e)}")
# raise
# def submit_query(session_id, query):
# try:
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key,
# 'Content-Type': 'application/json'
# }
# structured_query = f"""
# Based on the following patient information, provide a detailed medical analysis in JSON format:
# {query}
# Return only valid JSON with these fields:
# - diagnosis_details
# - probable_diagnoses (array)
# - treatment_plans (array)
# - lifestyle_modifications (array)
# - medications (array of objects with name and dosage)
# - additional_tests (array)
# - precautions (array)
# - follow_up (string)
# """
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": structured_query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# response.raise_for_status()
# return response.json()
# except requests.exceptions.RequestException as e:
# logger.error(f"Error submitting query: {str(e)}")
# raise
# def extract_json_from_answer(answer):
# """Extract and clean JSON from the LLM response"""
# try:
# # First try to parse the answer directly
# return json.loads(answer)
# except json.JSONDecodeError:
# try:
# # If that fails, try to find JSON content and parse it
# start_idx = answer.find('{')
# end_idx = answer.rfind('}') + 1
# if start_idx != -1 and end_idx != 0:
# json_str = answer[start_idx:end_idx]
# return json.loads(json_str)
# except (json.JSONDecodeError, ValueError):
# logger.error("Failed to parse JSON from response")
# raise
# def gradio_interface(patient_info):
# try:
# session_id = create_chat_session()
# llm_response = submit_query(session_id, patient_info)
# if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
# raise ValueError("Invalid response structure")
# # Extract and clean JSON from the response
# json_data = extract_json_from_answer(llm_response['data']['answer'])
# # Return clean JSON string without extra formatting
# return json.dumps(json_data)
# except Exception as e:
# logger.error(f"Error in gradio_interface: {str(e)}")
# return json.dumps({"error": str(e)})
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
# lines=5,
# max_lines=10
# )
# ],
# outputs=gr.Textbox(
# label="Medical Analysis",
# placeholder="JSON analysis will appear here...",
# lines=15
# ),
# title="Medical Diagnosis Assistant",
# description="Enter detailed patient information to receive a structured medical analysis in JSON format."
# )
# if __name__ == "__main__":
# iface.launch()