File size: 6,422 Bytes
a149a7b
e7f38cd
 
 
a149a7b
e7f38cd
 
 
46e3439
 
 
 
 
 
 
 
 
 
 
e7f38cd
a149a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f38cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a149a7b
 
e7f38cd
 
a149a7b
 
 
e7f38cd
a149a7b
e7f38cd
 
a149a7b
 
e7f38cd
 
a149a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7f38cd
 
a149a7b
 
 
 
 
 
 
 
 
 
 
e7f38cd
 
 
 
 
 
 
 
 
 
a149a7b
 
 
 
 
 
 
 
e7f38cd
 
a149a7b
 
e7f38cd
 
a149a7b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import requests
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import gradio as gr
from PIL import Image

# Load models
#model_initial = keras.models.load_model(
#    "models/initial_model.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_tumor = keras.models.load_model(
#    "models/model_tumor.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_stroke = keras.models.load_model(
#    "models/model_stroke.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_alzheimer = keras.models.load_model(
#    "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer}

# API key and user ID for the new API
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'

# Step 1: Create a chat session
def create_chat_session():
    create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
    create_session_headers = {
        'apikey': api_key
    }
    create_session_body = {
        "pluginIds": [],
        "externalUserId": external_user_id
    }
    # Make the request to create a chat session
    response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
    response_data = response.json()
    session_id = response_data['data']['id']
    return session_id

# Step 2: Submit a query to the API
def submit_query(session_id, query):
    submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
    submit_query_headers = {
        'apikey': api_key
    }
    submit_query_body = {
        "endpointId": "predefined-openai-gpt4o",
        "query": query,
        "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
        "responseMode": "sync"
    }
    response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
    return response.json()['data']['response']

# CNN Model for MRI Image Diagnosis (mockup since actual model code isn't available)
class CombinedDiseaseModel(tf.keras.Model):
    def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke):
        super(CombinedDiseaseModel, self).__init__()
        self.model_initial = model_initial
        self.model_alzheimer = model_alzheimer
        self.model_tumor = model_tumor
        self.model_stroke = model_stroke
        self.disease_labels = ["Alzheimer's", 'No Disease', 'Stroke', 'Tumor']

        self.sub_models = {
            "Alzheimer's": model_alzheimer,
            'Tumor': model_tumor,
            'Stroke': model_stroke
        }

    def call(self, inputs):
        initial_probs = self.model_initial(inputs, training=False)
        main_disease_idx = tf.argmax(initial_probs, axis=1)
        main_disease = self.disease_labels[main_disease_idx[0].numpy()]
        main_disease_prob = initial_probs[0, main_disease_idx[0]].numpy()

        if main_disease == 'No Disease':
            sub_category = "No Disease"
            sub_category_prob = main_disease_prob
        else:
            sub_model = self.sub_models[main_disease]
            sub_category_pred = sub_model(inputs, training=False)
            sub_category = tf.argmax(sub_category_pred, axis=1).numpy()[0]
            sub_category_prob = sub_category_pred[0, sub_category].numpy()

            if main_disease == "Alzheimer's":
                sub_category_label = ['Very Mild', 'Mild', 'Moderate']
            elif main_disease == 'Tumor':
                sub_category_label = ['Glioma', 'Meningioma', 'Pituitary']
            elif main_disease == 'Stroke':
                sub_category_label = ['Ischemic', 'Hemorrhagic']

            sub_category = sub_category_label[sub_category]

        return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\nThe subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%."

# Example CNN models (mockup)
# cnn_model = CombinedDiseaseModel(model_initial, model_alzheimer, model_tumor, model_stroke)

def process_image(image):
    """
    Processes the uploaded MRI image and makes predictions using the combined CNN model.
    """
    image = image.resize((256, 256))
    image = image.convert("RGB")
    image_array = np.array(image) / 255.0
    image_array = np.expand_dims(image_array, axis=0)
    
    predictions = cnn_model(image_array)  # Call the model to get predictions (replace with actual model call)
    return predictions

def query_llm_via_on_demand(patient_info, query_type):
    """
    Sends patient information and query type to the on-demand API and returns the generated response.
    """
    session_id = create_chat_session()
    query = f"Patient Information: {patient_info}\nQuery Type: {query_type}\nPlease provide additional insights."
    
    response = submit_query(session_id, query)
    return response

def gradio_interface(patient_info, query_type, image=None):
    """
    Gradio interface function that processes patient info, query type, and an optional MRI image, 
    and provides results from both the CNN model and the on-demand LLM API.
    """
    image_response = ""
    if image is not None:
        image_response = process_image(image)
    
    llm_response = query_llm_via_on_demand(patient_info, query_type)
    
    response = f"Patient Info: {patient_info}\nQuery Type: {query_type}\n\nLLM Response:\n{llm_response}"
    
    if image_response:
        response += f"\n\nImage Diagnosis:\n{image_response}"
    
    return response

# Create Gradio interface with MRI image upload option
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            label="Patient Information",
            placeholder="Enter patient details here...",
            lines=5,
            max_lines=10
        ),
        gr.Textbox(
            label="Query Type",
            placeholder="Enter the query type here..."
        ),
        gr.Image(
            type="pil",
            label="Upload an MRI Image",
            optional=True  # Allow the image input to be optional
        )
    ],
    outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."),
    title="Medical Diagnosis with MRI and On-Demand LLM Insights",
    description="Upload MRI images and provide patient information for diagnosis. The system integrates MRI diagnosis with insights from the on-demand LLM API."
)

# Launch the Gradio app
iface.launch()