Spaces:
Sleeping
Sleeping
File size: 10,738 Bytes
f1bd090 a149a7b 6eb0efb e7f38cd 9639015 a149a7b 6eb0efb 7427814 10ac7ef f1bd090 6eb0efb 3df9cbe 6eb0efb a4acb7d 10ac7ef a4acb7d 6eb0efb a4acb7d 6eb0efb 10ac7ef 6eb0efb b1db750 10ac7ef a4acb7d 10ac7ef a4acb7d 10ac7ef a4acb7d 6eb0efb a4acb7d 6eb0efb a4acb7d 10ac7ef 7427814 10ac7ef 6eb0efb 10ac7ef 6eb0efb 10ac7ef a149a7b 9639015 e7f38cd a4acb7d e7f38cd a4acb7d e7f38cd a4acb7d 10ac7ef a4acb7d 10ac7ef e7f38cd 6eb0efb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
# import requests
# import numpy as np
# import tensorflow as tf
# import tensorflow_hub as hub
# import gradio as gr
# from PIL import Image
# # Load models
# #model_initial = keras.models.load_model(
# # "models/initial_model.h5", custom_objects={'KerasLayer': hub.KerasLayer}
# #)
# #model_tumor = keras.models.load_model(
# # "models/model_tumor.h5", custom_objects={'KerasLayer': hub.KerasLayer}
# #)
# #model_stroke = keras.models.load_model(
# # "models/model_stroke.h5", custom_objects={'KerasLayer': hub.KerasLayer}
# #)
# #model_alzheimer = keras.models.load_model(
# # "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer}
# # API key and user ID for on-demand
# api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
# external_user_id = 'plugin-1717464304'
# # Step 1: Create a chat session with the API
# def create_chat_session():
# create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
# create_session_headers = {
# 'apikey': api_key
# }
# create_session_body = {
# "pluginIds": [],
# "externalUserId": external_user_id
# }
# response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
# response_data = response.json()
# session_id = response_data['data']['id']
# return session_id
# # Step 2: Submit query to the API
# def submit_query(session_id, query):
# submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
# submit_query_headers = {
# 'apikey': api_key
# }
# submit_query_body = {
# "endpointId": "predefined-openai-gpt4o",
# "query": query,
# "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
# "responseMode": "sync"
# }
# response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
# return response.json()
# # Combined disease model (placeholder)
# class CombinedDiseaseModel(tf.keras.Model):
# def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke):
# super(CombinedDiseaseModel, self).__init__()
# self.model_initial = model_initial
# self.model_alzheimer = model_alzheimer
# self.model_tumor = model_tumor
# self.model_stroke = model_stroke
# self.disease_labels = ["Alzheimer's", 'No Disease', 'Stroke', 'Tumor']
# self.sub_models = {
# "Alzheimer's": model_alzheimer,
# 'Tumor': model_tumor,
# 'Stroke': model_stroke
# }
# def call(self, inputs):
# initial_probs = self.model_initial(inputs, training=False)
# main_disease_idx = tf.argmax(initial_probs, axis=1)
# main_disease = self.disease_labels[main_disease_idx[0].numpy()]
# main_disease_prob = initial_probs[0, main_disease_idx[0]].numpy()
# if main_disease == 'No Disease':
# sub_category = "No Disease"
# sub_category_prob = main_disease_prob
# else:
# sub_model = self.sub_models[main_disease]
# sub_category_pred = sub_model(inputs, training=False)
# sub_category = tf.argmax(sub_category_pred, axis=1).numpy()[0]
# sub_category_prob = sub_category_pred[0, sub_category].numpy()
# if main_disease == "Alzheimer's":
# sub_category_label = ['Very Mild', 'Mild', 'Moderate']
# elif main_disease == 'Tumor':
# sub_category_label = ['Glioma', 'Meningioma', 'Pituitary']
# elif main_disease == 'Stroke':
# sub_category_label = ['Ischemic', 'Hemorrhagic']
# sub_category = sub_category_label[sub_category]
# return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\n" \
# f"The subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%."
# # Placeholder function to process images
# def process_image(image):
# image = image.resize((256, 256))
# image.convert("RGB")
# image_array = np.array(image) / 255.0
# image_array = np.expand_dims(image_array, axis=0)
# # Prediction logic here
# # predictions = cnn_model(image_array)
# return "Mock prediction: Disease identified with a probability of 85%."
# # Function to handle patient info, query, and image processing
# def gradio_interface(patient_info, query_type, image):
# if image is not None:
# image_response = process_image(image)
# # Call LLM with patient info and query
# session_id = create_chat_session()
# query = f"Patient Info: {patient_info}\nQuery Type: {query_type}"
# llm_response = submit_query(session_id, query)
# # Debug: Print the full response to inspect it
# print("LLM Response:", llm_response) # This will print the full response for inspection
# # Safely handle 'message' if it exists
# message = llm_response.get('data', {}).get('message', 'No message returned from LLM')
# # Check if message is empty and print the complete response if necessary
# if message == 'No message returned from LLM':
# print("Full LLM Response Data:", llm_response) # Inspect the full LLM response for any helpful info
# response = f"Patient Info: {patient_info}\nQuery Type: {query_type}\n\n{image_response}\n\nLLM Response:\n{message}"
# return response
# else:
# return "Please upload an image."
# # Gradio interface
# iface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Textbox(
# label="Patient Information",
# placeholder="Enter patient details here...",
# lines=5,
# max_lines=10
# ),
# gr.Textbox(
# label="Query Type",
# placeholder="Describe the type of diagnosis or information needed..."
# ),
# gr.Image(
# type="pil",
# label="Upload an MRI Image",
# )
# ],
# outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."),
# title="Medical Diagnosis with MRI and LLM",
# description="Upload MRI images and provide patient information for a combined CNN model and LLM analysis."
# )
# iface.launch()
import requests
import gradio as gr
import logging
import json
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'
def create_chat_session():
try:
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
create_session_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
create_session_body = {
"pluginIds": [],
"externalUserId": external_user_id
}
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
response.raise_for_status()
return response.json()['data']['id']
except requests.exceptions.RequestException as e:
logger.error(f"Error creating chat session: {str(e)}")
raise
def submit_query(session_id, query):
try:
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
submit_query_headers = {
'apikey': api_key,
'Content-Type': 'application/json'
}
structured_query = f"""
Based on the following patient information, provide a detailed medical analysis in JSON format:
{query}
Return only valid JSON with these fields:
- diagnosis_details
- probable_diagnoses (array)
- treatment_plans (array)
- lifestyle_modifications (array)
- medications (array of objects with name and dosage)
- additional_tests (array)
- precautions (array)
- follow_up (string)
"""
submit_query_body = {
"endpointId": "predefined-openai-gpt4o",
"query": structured_query,
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
"responseMode": "sync"
}
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
logger.error(f"Error submitting query: {str(e)}")
raise
def extract_json_from_answer(answer):
"""Extract and clean JSON from the LLM response"""
try:
# First try to parse the answer directly
return json.loads(answer)
except json.JSONDecodeError:
try:
# If that fails, try to find JSON content and parse it
start_idx = answer.find('{')
end_idx = answer.rfind('}') + 1
if start_idx != -1 and end_idx != 0:
json_str = answer[start_idx:end_idx]
return json.loads(json_str)
except (json.JSONDecodeError, ValueError):
logger.error("Failed to parse JSON from response")
raise
def gradio_interface(patient_info):
try:
session_id = create_chat_session()
llm_response = submit_query(session_id, patient_info)
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
raise ValueError("Invalid response structure")
# Extract and clean JSON from the response
json_data = extract_json_from_answer(llm_response['data']['answer'])
# Return clean JSON string without extra formatting
return json.dumps(json_data)
except Exception as e:
logger.error(f"Error in gradio_interface: {str(e)}")
return json.dumps({"error": str(e)})
# Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(
label="Patient Information",
placeholder="Enter patient details including: symptoms, medical history, current medications, age, gender, and any relevant test results...",
lines=5,
max_lines=10
)
],
outputs=gr.Textbox(
label="Medical Analysis",
placeholder="JSON analysis will appear here...",
lines=15
),
title="Medical Diagnosis Assistant",
description="Enter detailed patient information to receive a structured medical analysis in JSON format."
)
if __name__ == "__main__":
iface.launch() |