File size: 5,797 Bytes
a149a7b
e7f38cd
 
 
a149a7b
e7f38cd
 
 
46e3439
 
 
 
 
 
 
 
 
 
 
e7f38cd
9639015
a149a7b
 
 
9639015
a149a7b
 
 
 
 
 
 
 
 
 
 
 
 
 
9639015
a149a7b
 
 
 
 
 
 
 
 
 
 
 
9639015
a149a7b
9639015
e7f38cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9639015
 
e7f38cd
9639015
e7f38cd
 
9639015
e7f38cd
 
9639015
 
 
a149a7b
9639015
 
e7f38cd
 
3df9cbe
 
9639015
3df9cbe
 
 
 
 
 
 
 
 
 
 
9639015
 
a149a7b
9639015
e7f38cd
 
 
 
 
 
 
 
 
 
a149a7b
9639015
a149a7b
 
 
 
 
e7f38cd
 
9639015
 
e7f38cd
 
a149a7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import requests
import numpy as np
import tensorflow as tf
import tensorflow_hub as hub
import gradio as gr
from PIL import Image

# Load models
#model_initial = keras.models.load_model(
#    "models/initial_model.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_tumor = keras.models.load_model(
#    "models/model_tumor.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_stroke = keras.models.load_model(
#    "models/model_stroke.h5", custom_objects={'KerasLayer': hub.KerasLayer}
#)
#model_alzheimer = keras.models.load_model(
#    "models/model_alzheimer.h5", custom_objects={'KerasLayer': hub.KerasLayer}

# API key and user ID for on-demand
api_key = 'KGSjxB1uptfSk8I8A7ciCuNT9Xa3qWC3'
external_user_id = 'plugin-1717464304'

# Step 1: Create a chat session with the API
def create_chat_session():
    create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
    create_session_headers = {
        'apikey': api_key
    }
    create_session_body = {
        "pluginIds": [],
        "externalUserId": external_user_id
    }
    response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
    response_data = response.json()
    session_id = response_data['data']['id']
    return session_id

# Step 2: Submit query to the API
def submit_query(session_id, query):
    submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
    submit_query_headers = {
        'apikey': api_key
    }
    submit_query_body = {
        "endpointId": "predefined-openai-gpt4o",
        "query": query,
        "pluginIds": ["plugin-1712327325", "plugin-1713962163"],
        "responseMode": "sync"
    }
    response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
    return response.json()

# Combined disease model (placeholder)
class CombinedDiseaseModel(tf.keras.Model):
    def __init__(self, model_initial, model_alzheimer, model_tumor, model_stroke):
        super(CombinedDiseaseModel, self).__init__()
        self.model_initial = model_initial
        self.model_alzheimer = model_alzheimer
        self.model_tumor = model_tumor
        self.model_stroke = model_stroke
        self.disease_labels = ["Alzheimer's", 'No Disease', 'Stroke', 'Tumor']
        self.sub_models = {
            "Alzheimer's": model_alzheimer,
            'Tumor': model_tumor,
            'Stroke': model_stroke
        }

    def call(self, inputs):
        initial_probs = self.model_initial(inputs, training=False)
        main_disease_idx = tf.argmax(initial_probs, axis=1)
        main_disease = self.disease_labels[main_disease_idx[0].numpy()]
        main_disease_prob = initial_probs[0, main_disease_idx[0]].numpy()

        if main_disease == 'No Disease':
            sub_category = "No Disease"
            sub_category_prob = main_disease_prob
        else:
            sub_model = self.sub_models[main_disease]
            sub_category_pred = sub_model(inputs, training=False)
            sub_category = tf.argmax(sub_category_pred, axis=1).numpy()[0]
            sub_category_prob = sub_category_pred[0, sub_category].numpy()

            if main_disease == "Alzheimer's":
                sub_category_label = ['Very Mild', 'Mild', 'Moderate']
            elif main_disease == 'Tumor':
                sub_category_label = ['Glioma', 'Meningioma', 'Pituitary']
            elif main_disease == 'Stroke':
                sub_category_label = ['Ischemic', 'Hemorrhagic']

            sub_category = sub_category_label[sub_category]

        return f"The MRI image shows {main_disease} with a probability of {main_disease_prob*100:.2f}%.\n" \
               f"The subcategory of {main_disease} is {sub_category} with a probability of {sub_category_prob*100:.2f}%."

# Placeholder function to process images
def process_image(image):
    image = image.resize((256, 256))
    image.convert("RGB")
    image_array = np.array(image) / 255.0
    image_array = np.expand_dims(image_array, axis=0)
    # Prediction logic here
    # predictions = cnn_model(image_array)
    return "Mock prediction: Disease identified with a probability of 85%."

# Function to handle patient info, query, and image processing
def gradio_interface(patient_info, query_type, image):
    if image is not None:
        image_response = process_image(image)

        # Call LLM with patient info and query
        session_id = create_chat_session()
        query = f"Patient Info: {patient_info}\nQuery Type: {query_type}"
        llm_response = submit_query(session_id, query)
        
        # Debug: Print the full response to inspect it
        print("LLM Response:", llm_response)

        # Handle missing 'message' field safely
        message = llm_response.get('data', {}).get('message', 'No message returned from LLM')

        response = f"Patient Info: {patient_info}\nQuery Type: {query_type}\n\n{image_response}\n\nLLM Response:\n{message}"
        return response
    else:
        return "Please upload an image."

# Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(
            label="Patient Information",
            placeholder="Enter patient details here...",
            lines=5,
            max_lines=10
        ),
        gr.Textbox(
            label="Query Type",
            placeholder="Describe the type of diagnosis or information needed..."
        ),
        gr.Image(
            type="pil",
            label="Upload an MRI Image",
        )
    ],
    outputs=gr.Textbox(label="Response", placeholder="The response will appear here..."),
    title="Medical Diagnosis with MRI and LLM",
    description="Upload MRI images and provide patient information for a combined CNN model and LLM analysis."
)

iface.launch()