InstruSumEval / src /populate.py
henryL7's picture
add rounding
47531dc
raw
history blame
5.92 kB
import json
import os
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
import yaml
from sklearn.metrics import cohen_kappa_score
import numpy as np
TYPES = ["str", "number", "number", "number", "number", "number"]
def read_json(file_path: str) -> list[dict]:
"""
Read a JSON/JSONL file and return its contents as a list of dictionaries.
Parameters:
file_path (str): The path to the JSON file.
Returns:
list[dict]: The contents of the JSON file as a list of dictionaries.
"""
try:
with open(file_path) as f:
data = [json.loads(x) for x in f]
return data
except json.decoder.JSONDecodeError:
with open(file_path) as f:
data = json.load(f)
return data
def pairwise_compare(
evaluator1_dir: str,
evaluator2_dir: str,
) -> tuple[float, float]:
"""
Compare pairwise evaluators.
Args:
evaluator1_dir: The directory containing the responses from the first evaluator.
evaluator2_dir: The directory containing the responses from the second evaluator.
Returns:
None
"""
evaluator1_responses = read_json(evaluator1_dir)
evaluator2_responses = read_json(evaluator2_dir)
assert len(evaluator1_responses) == len(evaluator2_responses)
evaluator1_winners = np.array(
[response["winner"] for response in evaluator1_responses]
)
evaluator2_winners = np.array(
[response["winner"] for response in evaluator2_responses]
)
acc = (evaluator1_winners == evaluator2_winners).mean().item()
agreement = cohen_kappa_score(evaluator1_winners, evaluator2_winners)
return acc, agreement
def pairwise_meta_eval(
human_dir: str,
model_dir: str,
model_dir_swap: str
) -> dict[float]:
"""
Evaluate a pairwise evaluator.
Args:
human_dir: The directory containing the human responses.
model_dir: The directory containing the model responses.
model_dir_swap: The directory containing the model responses with swapped inputs.
Returns:
dict[float]: The accuracy and agreement.
"""
acc, agr = pairwise_compare(human_dir, model_dir)
swap_acc, swap_agr = pairwise_compare(
human_dir, model_dir_swap,
)
acc = (acc + swap_acc) / 2
agr = (agr + swap_agr) / 2
models_acc, models_agr = pairwise_compare(
model_dir, model_dir_swap,
)
return acc, agr, models_acc, models_agr
def load_leaderboard() -> pd.DataFrame:
"""Loads the leaderboard from the file system"""
with open("./data/models.yaml") as fp:
models = yaml.safe_load(fp)
predictions = {k: [] for k in ["Model", "Accuracy", "Agreement", "Self-Accuracy", "Self-Agreement"]}
for model in models:
fdir = model["fdir"]
acc, agr, models_acc, models_agr = pairwise_meta_eval(
f"./data/instrusum.json",
f"./predictions/{fdir}.jsonl",
f"./predictions/{fdir}_swap.jsonl"
)
predictions["Model"].append(model["name"])
predictions["Accuracy"].append(acc)
predictions["Agreement"].append(agr)
predictions["Self-Accuracy"].append(models_acc)
predictions["Self-Agreement"].append(models_agr)
return pd.DataFrame(predictions).sort_values(by="Agreement", ascending=False).round(decimals=3)
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[cols].round(decimals=2)
# filter out if any of the benchmarks have not been produced
df = df[has_no_nan_values(df, benchmark_cols)]
return raw_data, df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]