File size: 5,921 Bytes
234bc89
 
 
 
 
 
 
 
b558422
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47531dc
b558422
 
234bc89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import json
import os

import pandas as pd

from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
import yaml
from sklearn.metrics import cohen_kappa_score
import numpy as np

TYPES = ["str", "number", "number", "number", "number", "number"]

def read_json(file_path: str) -> list[dict]:
    """
    Read a JSON/JSONL file and return its contents as a list of dictionaries.
    
    Parameters:
        file_path (str): The path to the JSON file.
        
    Returns:
        list[dict]: The contents of the JSON file as a list of dictionaries.
    """
    try:
        with open(file_path) as f:
            data = [json.loads(x) for x in f]
        return data
    except json.decoder.JSONDecodeError:
        with open(file_path) as f:
            data = json.load(f)
        return data

def pairwise_compare(
    evaluator1_dir: str,
    evaluator2_dir: str,
) -> tuple[float, float]:
    """
    Compare pairwise evaluators.

    Args:
        evaluator1_dir: The directory containing the responses from the first evaluator.
        evaluator2_dir: The directory containing the responses from the second evaluator.

    Returns:
        None
    """

    evaluator1_responses = read_json(evaluator1_dir)
    evaluator2_responses = read_json(evaluator2_dir)
    assert len(evaluator1_responses) == len(evaluator2_responses)
    evaluator1_winners = np.array(
        [response["winner"] for response in evaluator1_responses]
    )
    evaluator2_winners = np.array(
        [response["winner"] for response in evaluator2_responses]
    )
    acc = (evaluator1_winners == evaluator2_winners).mean().item()
    agreement = cohen_kappa_score(evaluator1_winners, evaluator2_winners)
    return acc, agreement


def pairwise_meta_eval(
    human_dir: str,
    model_dir: str,
    model_dir_swap: str
) -> dict[float]:
    """
    Evaluate a pairwise evaluator.

    Args:
        human_dir: The directory containing the human responses.
        model_dir: The directory containing the model responses.
        model_dir_swap: The directory containing the model responses with swapped inputs.

    Returns:
        dict[float]: The accuracy and agreement.
    """
    acc, agr = pairwise_compare(human_dir, model_dir)
    swap_acc, swap_agr = pairwise_compare(
        human_dir, model_dir_swap,
    )
    acc = (acc + swap_acc) / 2
    agr = (agr + swap_agr) / 2
    models_acc, models_agr = pairwise_compare(
        model_dir, model_dir_swap,
    )
    return acc, agr, models_acc, models_agr

def load_leaderboard() -> pd.DataFrame:
    """Loads the leaderboard from the file system"""
    with open("./data/models.yaml") as fp:
        models = yaml.safe_load(fp)

    predictions = {k: [] for k in ["Model", "Accuracy", "Agreement", "Self-Accuracy", "Self-Agreement"]}

    for model in models:
        fdir = model["fdir"]
        acc, agr, models_acc, models_agr = pairwise_meta_eval(
            f"./data/instrusum.json",
            f"./predictions/{fdir}.jsonl",
            f"./predictions/{fdir}_swap.jsonl"
        )
        predictions["Model"].append(model["name"])
        predictions["Accuracy"].append(acc)
        predictions["Agreement"].append(agr)
        predictions["Self-Accuracy"].append(models_acc)
        predictions["Self-Agreement"].append(models_agr)
    return pd.DataFrame(predictions).sort_values(by="Agreement", ascending=False).round(decimals=3)

            


def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
    """Creates a dataframe from all the individual experiment results"""
    raw_data = get_raw_eval_results(results_path, requests_path)
    all_data_json = [v.to_dict() for v in raw_data]

    df = pd.DataFrame.from_records(all_data_json)
    df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
    df = df[cols].round(decimals=2)

    # filter out if any of the benchmarks have not been produced
    df = df[has_no_nan_values(df, benchmark_cols)]
    return raw_data, df


def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
    """Creates the different dataframes for the evaluation queues requestes"""
    entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
    all_evals = []

    for entry in entries:
        if ".json" in entry:
            file_path = os.path.join(save_path, entry)
            with open(file_path) as fp:
                data = json.load(fp)

            data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
            data[EvalQueueColumn.revision.name] = data.get("revision", "main")

            all_evals.append(data)
        elif ".md" not in entry:
            # this is a folder
            sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
            for sub_entry in sub_entries:
                file_path = os.path.join(save_path, entry, sub_entry)
                with open(file_path) as fp:
                    data = json.load(fp)

                data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
                data[EvalQueueColumn.revision.name] = data.get("revision", "main")
                all_evals.append(data)

    pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
    running_list = [e for e in all_evals if e["status"] == "RUNNING"]
    finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
    df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
    df_running = pd.DataFrame.from_records(running_list, columns=cols)
    df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
    return df_finished[cols], df_running[cols], df_pending[cols]