Spaces:
Sleeping
Sleeping
Update ai_text_detector_valid_final.py
Browse files- ai_text_detector_valid_final.py +37 -52
ai_text_detector_valid_final.py
CHANGED
|
@@ -1,40 +1,26 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
import numpy as np
|
| 4 |
-
import re
|
| 5 |
|
| 6 |
# Multiple AI text detection models
|
| 7 |
-
MODELS = {
|
| 8 |
"DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 9 |
-
"MonkeyDAnh":
|
| 10 |
-
"Andreas122001":
|
| 11 |
-
"roberta-mnli": "roberta-large-mnli"
|
| 12 |
}
|
| 13 |
-
|
| 14 |
-
# Fix for "Final Score" formatting and zero-shot model handling
|
| 15 |
def load_model(model_id):
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 21 |
-
return tokenizer, model
|
| 22 |
|
| 23 |
def predict(text, tokenizer, model):
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
return np.array([human_score, ai_score])
|
| 31 |
-
else:
|
| 32 |
-
# Normal text classification
|
| 33 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 34 |
-
with torch.no_grad():
|
| 35 |
-
outputs = model(**inputs)
|
| 36 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 37 |
-
return probs[0].numpy() # [human_prob, ai_prob]
|
| 38 |
|
| 39 |
def verdict(ai_prob):
|
| 40 |
"""Return a human-readable verdict based on AI probability"""
|
|
@@ -45,9 +31,9 @@ def verdict(ai_prob):
|
|
| 45 |
elif 40 <= ai_prob < 60:
|
| 46 |
return "Unclear – could be either human or AI-assisted."
|
| 47 |
elif 60 <= ai_prob < 80:
|
| 48 |
-
return "
|
| 49 |
-
else:
|
| 50 |
-
return "
|
| 51 |
|
| 52 |
def detect_text(text):
|
| 53 |
results = {}
|
|
@@ -68,38 +54,37 @@ def detect_text(text):
|
|
| 68 |
|
| 69 |
# ------------------ Final Score (Average) ------------------
|
| 70 |
try:
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
results["Final Score"] = {
|
| 76 |
-
"
|
|
|
|
|
|
|
|
|
|
| 77 |
}
|
| 78 |
-
else:
|
| 79 |
-
results["Final Score"] = {"error": "No valid scores to calculate average."}
|
| 80 |
-
|
| 81 |
except Exception as e:
|
| 82 |
results["Final Score"] = {"error": str(e)}
|
| 83 |
|
| 84 |
return results
|
| 85 |
|
|
|
|
| 86 |
if __name__ == "__main__":
|
| 87 |
text = input("Enter text to analyze:\n")
|
| 88 |
output = detect_text(text)
|
| 89 |
-
|
| 90 |
print("\n--- Detection Results ---")
|
| 91 |
for model, scores in output.items():
|
| 92 |
print(f"\n[{model}]")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
if k == "Verdict":
|
| 99 |
-
print(f"{k}: {v}")
|
| 100 |
-
else:
|
| 101 |
-
print(f"{k}: {v_str}%")
|
| 102 |
-
else:
|
| 103 |
-
print(f"{k}: {v}")
|
| 104 |
-
else:
|
| 105 |
-
print(f"Error: {scores}")
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
# Multiple AI text detection models
|
| 6 |
+
MODELS = {
|
| 7 |
"DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 8 |
+
"MonkeyDAnh":"MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
|
| 9 |
+
"Andreas122001":"andreas122001/roberta-academic-detector"
|
|
|
|
| 10 |
}
|
| 11 |
+
|
|
|
|
| 12 |
def load_model(model_id):
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 14 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 15 |
+
return tokenizer, model
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def predict(text, tokenizer, model):
|
| 18 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 19 |
+
with torch.no_grad():
|
| 20 |
+
outputs = model(**inputs)
|
| 21 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 22 |
+
return probs[0].numpy() # [human_prob, ai_prob]
|
| 23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
def verdict(ai_prob):
|
| 26 |
"""Return a human-readable verdict based on AI probability"""
|
|
|
|
| 31 |
elif 40 <= ai_prob < 60:
|
| 32 |
return "Unclear – could be either human or AI-assisted."
|
| 33 |
elif 60 <= ai_prob < 80:
|
| 34 |
+
return "Possibly AI-generated, or a human using AI assistance."
|
| 35 |
+
else: # ai_prob >= 80
|
| 36 |
+
return "Likely AI-generated or heavily AI-assisted."
|
| 37 |
|
| 38 |
def detect_text(text):
|
| 39 |
results = {}
|
|
|
|
| 54 |
|
| 55 |
# ------------------ Final Score (Average) ------------------
|
| 56 |
try:
|
| 57 |
+
ai_scores, human_scores = [], []
|
| 58 |
+
|
| 59 |
+
for r in results.values():
|
| 60 |
+
if isinstance(r, dict) and "AI Probability" in r and "Human Probability" in r:
|
| 61 |
+
ai_scores.append(r["AI Probability"])
|
| 62 |
+
human_scores.append(r["Human Probability"])
|
| 63 |
+
|
| 64 |
+
if ai_scores and human_scores:
|
| 65 |
+
avg_ai = sum(ai_scores) / len(ai_scores)
|
| 66 |
+
avg_human = sum(human_scores) / len(human_scores)
|
| 67 |
+
|
| 68 |
results["Final Score"] = {
|
| 69 |
+
# "Human Probability (average)": float(round(avg_human, 2)),
|
| 70 |
+
# "AI Probability (average)": float(round(avg_ai, 2))
|
| 71 |
+
# "Verdict": verdict(avg_ai)
|
| 72 |
+
verdict(avg_ai)
|
| 73 |
}
|
|
|
|
|
|
|
|
|
|
| 74 |
except Exception as e:
|
| 75 |
results["Final Score"] = {"error": str(e)}
|
| 76 |
|
| 77 |
return results
|
| 78 |
|
| 79 |
+
|
| 80 |
if __name__ == "__main__":
|
| 81 |
text = input("Enter text to analyze:\n")
|
| 82 |
output = detect_text(text)
|
|
|
|
| 83 |
print("\n--- Detection Results ---")
|
| 84 |
for model, scores in output.items():
|
| 85 |
print(f"\n[{model}]")
|
| 86 |
+
for k, v in scores.items():
|
| 87 |
+
if isinstance(v, (int, float)): # only add % for numeric values
|
| 88 |
+
print(f"{k}: {v}%")
|
| 89 |
+
else:
|
| 90 |
+
print(f"{k}: {v}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|