Spaces:
Running
Running
Update ai_text_detector_valid_final.py
Browse files- ai_text_detector_valid_final.py +42 -44
ai_text_detector_valid_final.py
CHANGED
|
@@ -1,43 +1,40 @@
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
# Multiple AI text detection models
|
| 6 |
-
MODELS = {
|
| 7 |
"DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 8 |
-
"MonkeyDAnh":"MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
|
| 9 |
-
"Andreas122001":"andreas122001/roberta-academic-detector",
|
| 10 |
"roberta-mnli": "roberta-large-mnli"
|
| 11 |
}
|
| 12 |
-
|
|
|
|
| 13 |
def load_model(model_id):
|
| 14 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 15 |
-
# Use the zero-shot classification pipeline for NLI models
|
| 16 |
if model_id == "roberta-large-mnli":
|
| 17 |
-
|
| 18 |
else:
|
|
|
|
| 19 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 20 |
-
|
| 21 |
|
| 22 |
def predict(text, tokenizer, model):
|
| 23 |
if isinstance(model, pipeline):
|
| 24 |
-
#
|
| 25 |
-
|
| 26 |
-
result = model(text,
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
ai_prob = result["scores"][result["labels"].index("This text was written by an AI.")]
|
| 31 |
-
|
| 32 |
-
return np.array([human_prob, ai_prob])
|
| 33 |
else:
|
| 34 |
-
#
|
| 35 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 36 |
with torch.no_grad():
|
| 37 |
outputs = model(**inputs)
|
| 38 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 39 |
-
return probs[0].numpy()
|
| 40 |
-
|
| 41 |
|
| 42 |
def verdict(ai_prob):
|
| 43 |
"""Return a human-readable verdict based on AI probability"""
|
|
@@ -48,9 +45,9 @@ def verdict(ai_prob):
|
|
| 48 |
elif 40 <= ai_prob < 60:
|
| 49 |
return "Unclear – could be either human or AI-assisted."
|
| 50 |
elif 60 <= ai_prob < 80:
|
| 51 |
-
return "
|
| 52 |
-
else:
|
| 53 |
-
return "
|
| 54 |
|
| 55 |
def detect_text(text):
|
| 56 |
results = {}
|
|
@@ -71,37 +68,38 @@ def detect_text(text):
|
|
| 71 |
|
| 72 |
# ------------------ Final Score (Average) ------------------
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
ai_scores.append(r["AI Probability"])
|
| 79 |
-
human_scores.append(r["Human Probability"])
|
| 80 |
-
|
| 81 |
-
if ai_scores and human_scores:
|
| 82 |
-
avg_ai = sum(ai_scores) / len(ai_scores)
|
| 83 |
-
avg_human = sum(human_scores) / len(human_scores)
|
| 84 |
-
|
| 85 |
results["Final Score"] = {
|
| 86 |
-
|
| 87 |
-
# "AI Probability (average)": float(round(avg_ai, 2))
|
| 88 |
-
# "Verdict": verdict(avg_ai)
|
| 89 |
-
verdict(avg_ai)
|
| 90 |
}
|
|
|
|
|
|
|
|
|
|
| 91 |
except Exception as e:
|
| 92 |
results["Final Score"] = {"error": str(e)}
|
| 93 |
|
| 94 |
return results
|
| 95 |
|
| 96 |
-
|
| 97 |
if __name__ == "__main__":
|
| 98 |
text = input("Enter text to analyze:\n")
|
| 99 |
output = detect_text(text)
|
|
|
|
| 100 |
print("\n--- Detection Results ---")
|
| 101 |
for model, scores in output.items():
|
| 102 |
print(f"\n[{model}]")
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 3 |
import numpy as np
|
| 4 |
+
import re
|
| 5 |
|
| 6 |
# Multiple AI text detection models
|
| 7 |
+
MODELS = {
|
| 8 |
"DeBERTa Detector": "distilbert-base-uncased-finetuned-sst-2-english",
|
| 9 |
+
"MonkeyDAnh": "MonkeyDAnh/my-awesome-ai-detector-roberta-base-v4-human-vs-machine-finetune",
|
| 10 |
+
"Andreas122001": "andreas122001/roberta-academic-detector",
|
| 11 |
"roberta-mnli": "roberta-large-mnli"
|
| 12 |
}
|
| 13 |
+
|
| 14 |
+
# Fix for "Final Score" formatting and zero-shot model handling
|
| 15 |
def load_model(model_id):
|
|
|
|
|
|
|
| 16 |
if model_id == "roberta-large-mnli":
|
| 17 |
+
return None, pipeline("zero-shot-classification", model=model_id, device=0 if torch.cuda.is_available() else -1)
|
| 18 |
else:
|
| 19 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 20 |
model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 21 |
+
return tokenizer, model
|
| 22 |
|
| 23 |
def predict(text, tokenizer, model):
|
| 24 |
if isinstance(model, pipeline):
|
| 25 |
+
# Handle the zero-shot classification pipeline
|
| 26 |
+
labels = ["human-written", "AI-generated"]
|
| 27 |
+
result = model(text, labels)
|
| 28 |
+
human_score = result['scores'][result['labels'].index('human-written')]
|
| 29 |
+
ai_score = result['scores'][result['labels'].index('AI-generated')]
|
| 30 |
+
return np.array([human_score, ai_score])
|
|
|
|
|
|
|
|
|
|
| 31 |
else:
|
| 32 |
+
# Normal text classification
|
| 33 |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 34 |
with torch.no_grad():
|
| 35 |
outputs = model(**inputs)
|
| 36 |
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 37 |
+
return probs[0].numpy() # [human_prob, ai_prob]
|
|
|
|
| 38 |
|
| 39 |
def verdict(ai_prob):
|
| 40 |
"""Return a human-readable verdict based on AI probability"""
|
|
|
|
| 45 |
elif 40 <= ai_prob < 60:
|
| 46 |
return "Unclear – could be either human or AI-assisted."
|
| 47 |
elif 60 <= ai_prob < 80:
|
| 48 |
+
return "Likely AI-generated with some human editing."
|
| 49 |
+
else:
|
| 50 |
+
return "Most likely AI-generated."
|
| 51 |
|
| 52 |
def detect_text(text):
|
| 53 |
results = {}
|
|
|
|
| 68 |
|
| 69 |
# ------------------ Final Score (Average) ------------------
|
| 70 |
try:
|
| 71 |
+
valid_ai_scores = [r["AI Probability"] for r in results.values() if isinstance(r, dict) and "AI Probability" in r]
|
| 72 |
+
|
| 73 |
+
if valid_ai_scores:
|
| 74 |
+
avg_ai = sum(valid_ai_scores) / len(valid_ai_scores)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
results["Final Score"] = {
|
| 76 |
+
"Verdict": verdict(avg_ai)
|
|
|
|
|
|
|
|
|
|
| 77 |
}
|
| 78 |
+
else:
|
| 79 |
+
results["Final Score"] = {"error": "No valid scores to calculate average."}
|
| 80 |
+
|
| 81 |
except Exception as e:
|
| 82 |
results["Final Score"] = {"error": str(e)}
|
| 83 |
|
| 84 |
return results
|
| 85 |
|
|
|
|
| 86 |
if __name__ == "__main__":
|
| 87 |
text = input("Enter text to analyze:\n")
|
| 88 |
output = detect_text(text)
|
| 89 |
+
|
| 90 |
print("\n--- Detection Results ---")
|
| 91 |
for model, scores in output.items():
|
| 92 |
print(f"\n[{model}]")
|
| 93 |
+
if isinstance(scores, dict):
|
| 94 |
+
for k, v in scores.items():
|
| 95 |
+
if isinstance(v, (int, float)):
|
| 96 |
+
# Use a regex to clean up the number formatting for a cleaner output
|
| 97 |
+
v_str = re.sub(r'(\d+)\.0$', r'\1', f"{v:.2f}")
|
| 98 |
+
if k == "Verdict":
|
| 99 |
+
print(f"{k}: {v}")
|
| 100 |
+
else:
|
| 101 |
+
print(f"{k}: {v_str}%")
|
| 102 |
+
else:
|
| 103 |
+
print(f"{k}: {v}")
|
| 104 |
+
else:
|
| 105 |
+
print(f"Error: {scores}")
|